以下是关于 Lora 模型训练数据集的相关内容:
创建数据集:
1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。
2. 在数据集一栏中,点击右上角创建数据集,输入数据集名称。
3. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片(之后可在 c 站使用自动打标功能),还可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。
4. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。
5. 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,能预览到数据集的图片以及对应的标签。
Lora 训练:
1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。
2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。
3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。
4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。
5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。然后等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。
用 SD 训练一套贴纸 LoRA 模型的工作流:
1. 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。
2. 二次加工:完成贴纸的白色边线等细节加工。
3. 处理素材:给训练集图片打 tag,修改 tag。
4. 训练模型:将上述处理好的数据集做成训练集,进行训练。
用 SD 训练一套贴纸 LoRA 模型的原始形象:MJ 关键词:
A drawing for a rabbit stickers,in the style of hallyu,screenshot,mori kei,duckcore plush doll art exaggerated poses,cry/happy/sad/...ar 3:4 niji 5 style cute s 180 。会得到不同风格的贴图,我们可以先看看自己喜欢哪一种。出图过程可以有意识地总结这一类贴图的特征,比如都是可爱的兔子,有不同的衣服和头饰,都有一双大大的卡通眼睛,会有不同的面部表情。
注意事项:
1. 关键词中限制了颜色,因此 MJ 生成的图片会一种情绪对应一种颜色,所以同一种情绪最好多生成几张不同色系的,可以减少后续训练中模型把情绪和颜色做挂钩(如果需要这样的话,也可以反其道而行之)。
2. 数据集中正面情绪与负面情绪最好比例差不多,如果都是正面积极的,在出一些负面情时(sad,cry)的时候,可能会出现奇怪的问题(如我们训练的是兔子形象,但 ai 认知的 sad 可能是人的形象,可能会出现人物特征)。
3. 如果训练 256266 大小的表情包,这样的素材就已经够用了。如果要训练更高像素的图片,则需要进一步使用 MJ 垫图和高清扩展功能。
高清化:
左(256)→右(1024),输入左图,加入内容描述,加入风格描述,挑选合适的,选出新 30 张图片(卡通二次元类型的 lora 训练集 30 张差不多,真人 60100 张)。
2024-10-22