直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
ai.学python
如果您想通过 AI 学习 Python,以下是一些关键的知识和步骤: 从零开始学习,最重要的是掌握最少必要知识,然后尽快开始并度过这个过程。现在有了 AI 能极大加速这一进程。您可以参考:,结合 ChatGPT,不懂的地方都可以提问。 如果希望继续精进,最好体系化地了解编程和 AI,至少熟悉以下内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 2. 函数: 定义和调用函数:学会定义自己的函数及调用现有函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学会导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学会为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及多态的实现。 5. 异常处理: 理解异常:了解异常是什么及在 Python 中的工作方式。 异常处理:学会使用 try 和 except 语句处理程序中可能的错误。 6. 文件操作: 文件读写:学会打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何用 Python 处理文件路径及列举目录下的文件。
2024-10-16
我想找一个免费生成数字人的软件
以下为您介绍几款免费生成数字人的软件及使用方法: 剪映:在剪映右侧窗口顶部,打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。选择数字人形象时会播放其声音,可判断是否需要,点击右下角“添加数字人”将其添加到当前视频中。左下角会提示渲染完成时间,可点击预览查看效果。还可为视频增加背景图片,删除先前导入的文本内容,点击左上角“媒体”菜单并“导入”本地图片,将图片添加到视频轨道上,调整图片位置和大小。 HEYGEN:优点是人物灵活、五官自然、视频生成快;缺点是中文人声选择较少。使用方法为点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片,上传后效果在My Avatar处显示,点开大图后点击Create with AI Studio进入制作,写上视频文案并选择配音音色或自行上传音频,最后点击Submit得到数字人视频。 DID:优点是制作简单、人物灵活;缺点是免费版下载后有水印。使用方法为点击网址,点击右上角Create vedio,选择人物形象,可点击ADD添加照片或使用给出的人物形象,配音时可选择提供文字选择音色或直接上传音频,最后点击Generate vedio生成视频,打开生成的视频可下载或分享。 KreadoAI:优点是免费、功能齐全;缺点是音色较AI。使用方法为点击网址注册后获得120免费k币,选择“照片数字人口播”功能,点击开始创作,选择自定义照片,配音时可选择提供文字选择音色或直接上传音频,打开绿幕按钮,点击背景添加背景图,最后点击生成视频。 此外,还有通过AI换脸软件完成数字人“私有化”的方法:需要谷歌账号(可在淘宝或“”购买)。第一步打开谷歌浏览器,点击链接https://github.com/facefusion/facefusioncolab 并点击open colab进到程序主要运行界面,在右上角点击“代码执行程序”选择“全部运行”,点击红框对应的URL打开操作界面;第二步,点击“source”上传自己的照片和“target”上传之前的剪映数字人视频,保持默认参数,点击“START”生成;第三步等待专属数字人视频出炉。有关数字人使用问题可在评论区留言交流,对数字人课程感兴趣可查看通往AGI之路X AI沃茨的《克隆你自己》课程。在线观看第一节:https://www.bilibili.com/video/BV1yw411E7Rt/?spm_id_from=333.999.0.0 。
2024-10-16
我想找一些具有「图片理解」能力的模型,最好是国内的
以下是一些具有“图片理解”能力的国内模型: 1. Gemini 模型:在各种图像理解基准测试中表现出色,如在表 7 中的各项测试中是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等任务中性能强大。在 zeroshot 评估中表现优于其他模型,在多学科的 MMMU 评估基准测试中也取得了最好的分数。 2. 国内大模型: 北京企业机构:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海企业机构:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 3. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型,在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。
2024-10-16
一键生成PPT的AI工具
以下为您介绍几款一键生成 PPT 的 AI 工具: 1. 歌者 PPT(gezhe.com): 功能: 话题生成:一键生成 PPT 内容。 资料转换:支持多种文件格式转 PPT。 多语言支持:生成多语言 PPT。 模板和案例:海量模板和案例库。 在线编辑和分享:生成结果可自由编辑并在线分享。 增值服务:自定义模板、字体、动效等。 简介:是一款永久免费的智能 PPT 生成工具,用户可轻松将任何主题或资料转化为 PPT,并选择应用大量精美模板,适用于多种场景。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 完全免费,对学生和职场人士是福音。 智能化程度高,高效准确生成 PPT。 模板和案例库丰富,总能找到适合的模版或案例。 适合不太擅长制作 PPT 或时间紧张的人群,几乎无需学习成本就能上手使用。 2. 熊猫 Jay: 网址:国内网站,不需要魔法。地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 操作步骤: 选择模版。 输入大纲和要点,由于闪击的语法和准备的大纲内容有一些偏差,可以参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650,将大纲转换成适配闪击的语法。 生成 PPT,点击文本转 PPT,并在提示框中选择确定,得到转换后的 PPT,可在线编辑。 导出:导出有一些限制,PPT 需要会员才能导出。 3. 增强版 Bot: 场景: 图片理解与生成:在对话框输入诉求,生成常见的系统架构风格架构设计图,给出一张图片即可,也可根据图片提取关键知识内容。 PPT 一键生成:根据上下文,在对话框输入诉求,生成幻灯片内容及相关模板选择。 PDF 智能制作:根据上下文,在对话框输入诉求,生成相应的可选模板。 系统架构论文一键创作。
2024-10-16
我想找一些具有「图片理解」能力的模型
以下是一些具有“图片理解”能力的模型: 1. Gemini 模型:Gemini Ultra 在各种图像理解基准测试中表现出色,如在表 7 中的各项测试中是最先进的。它在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中性能强大。在 zeroshot 评估中表现优于其他模型,还超过了几个在基准训练集上微调的现有模型。在 MMMU 评估基准测试中也取得了最好的分数。 2. 李飞飞团队开发的计算机视觉模型:能够在看到图片的第一时间生成类似人类语言的句子,但仍存在需要改进和学习的地方。 3. GPT4V 模型:图像理解由多模态 GPT3.5 和 GPT4 提供支持,能够将语言推理技能应用于各种图像,例如照片、屏幕截图以及包含文本和图像的文档。
2024-10-16
近期数字人比较成熟的应用有哪些
数字人目前有以下较为成熟的应用: 1. 影视行业:真人驱动的数字人通过动捕设备或视觉算法还原真人动作表情,用于影视制作。 2. 直播带货:真人驱动的数字人在直播带货领域发挥作用。 3. 家庭:未来可能会有数字人管家,全面接管智能家居或其他设备。 4. 学校:未来可能会有数字人老师,为学生答疑解惑。 5. 商场:未来可能会有数字人导购,为顾客提供指路、托管个人物品等服务。 数字人的构建方式包括: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表如 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表如 UE、Unity、虚幻引擎 MetaHuman 等。 3. AIGC:虽然省去建模流程,但在数字人 ID 一致性和帧连贯性上存在弊端,不过算法发展迅速,未来可能会有改善。AIGC 还有直接生成 2D/3D 引擎模型的探索方向。
2024-10-16
我需要一个能帮助我制作播放在展馆墙面的动画视频的AI工具
以下为您介绍一些可用于制作展馆墙面播放的动画视频的 AI 工具及相关方法: Pika、Pixverse、Runway、SVD 是四大可用的 AI 视频工具。 对于每个 prompt 的角色形象描述,可采用“景别+角色特征+位置关系+环境+影片风格+比例”的方式,例如:“Medium shot,side view,a middleaged man wearing glasses and a gray short shirt with gray hair is sitting at the desk with his head lowered.A 14yearold girl with a ponytail wearing a white Tshirt and jeans is standing in front of the bookshelf.The room surrounded by bookshelves is at dusk.Pixar animated movie style,highly detailed,8k niji 6 ar 7:3”。 确定主场景时,若场景一致性难以保持,可采用穿书方式将场景分布到不同地区。室内镜头中,AI 对书房的理解虽有相似之处但可能存在穿帮,主场景出现时间不长时可接受。 解决人物和场景一致性问题后,生图障碍仍存在于双人关系镜头部分。此次制作比上个视频稍容易,MJ 的语义理解有所提升,部分镜头如女孩能在镜子里看到妈妈的镜头较令人满意,但要自由生成同场戏内不同角度的关系镜头仍有难度。
2024-10-16
推荐一些知识库系统
以下为您推荐一些知识库系统: 1. 专家系统: 是符号人工智能的早期成就之一,为充当有限问题领域的专家而设计。 包含从人类专家提取的知识库、推理引擎以及问题记忆。 推理引擎协调问题状态空间的搜索过程,必要时向用户提问。 例如根据动物物理特征判断动物的专家系统,可通过绘制 ANDOR 树或使用规则来表示知识。 2. AI Agent 中的外置知识: 由外部数据库提供,特点是能够动态更新和调整。 涉及多种数据存储和组织方式,包括向量数据库、关系型数据库和知识图谱。 实际应用中常采用 RAG 架构,结合检索和生成,增强模型的生成能力。 3. 知识管理体系: 是组织和管理信息、数据和知识的方法,帮助个人或组织有效捕捉、组织、访问和使用知识,提高效率、创新能力和决策质量。 包括收集信息、整理知识、分享经验、促进学习和创新等流程,以及分类、标签和索引等组织方式。 关键组成部分有知识的捕捉、组织、分享和应用。 创建知识管理体系可提高效率、增强决策能力、促进创新和增强适应能力。
2024-10-16
AI建筑自动化
以下是一些能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载了自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,为设计师提供全新设计模式,在住宅设计早期可引入标准和规范约束 AI 生成的设计结果,保证合规性。 4. Fast AI 人工智能审图平台:从住宅设计图构件开始,形成全自动智能审图流程,能自动导入、划分区域、识别构件、审查强条和导出结果,还能集成建筑全寿命周期信息实现数据汇总与管理。 每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-10-16
什么事指代消解
指代消解是在多轮对话中需要解决的问题。在自然的人类语言交流中,多轮对话常出现使用代词如“它”“他们”“我们”等的指代情况。若仅依据用户原始提问检索知识片段,可能导致结果不精确或无法检索到信息,且对模型回复内容的限制可能影响多轮对话流畅性甚至中断。为提升对话系统性能和用户体验,需开发提示词来解决此问题,确保模型在连续交流中提供准确连贯回答。 由于指代消解需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决指代消解问题再进行下一轮答复。首先准备所需提示词,这里的提示词是用 CoT 写出的思维链,列举不同推理情景,让模型推理出需消解的代词并重新组织问题。 接着复现代指消解步骤: 1. 进行第一轮对话,如提出“尼罗河是什么?”,系统召回相关知识片段并回复。 2. 开始指代消解。 3. 使用指代消解后的问题进行提问,如“尼罗河对埃及的贡献是什么?”,系统准确召回知识片段并答复。 客观来说,指代消解是利用 RAG 架构构建智能问答系统的关键挑战之一,尤其在多轮对话场景中突出。目前用 Prompt 方法解决,要求模型先解析推理问题再回复,增加了计算资源消耗和系统响应延迟,处理时需权衡推理负荷、Token 消耗和问答准确性等因素,根据应用环境和需求做出合理选择和策略。
2024-10-16