直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。后来,计算资源更便宜、数据更多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习效果显著,随规模扩大预期改善,我们持续增加相关资源投入。人类发现的算法能学习任何数据分布,计算能力和数据量越大,解决难题能力越强。未来,人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,在各领域取得科学进展。 人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模,伴随新技术迭代呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,需完善产业标准体系。 总之,智能时代的曙光带来了历史性发展,也带来复杂高风险挑战,但潜在正面影响巨大,未来将非常光明灿烂,带来巨大繁荣。
2024-09-30
量子位:2024中国AIGC广告营销产业全景报告
以下是关于《量子位:2024 中国 AIGC 广告营销产业全景报告》的相关信息: 生成式 AI 从供给端到需求端对广告营销各环节玩家造成冲击。在工作流程方面,AI 最先赋能策略洞察与内容生产,大模型加持的数字人带来全新交互体验。在典型场景中,创意生产工具呈平民化趋势,品牌可以为“一个人”量身定制广告。同时,生成式 AI 在创新广告形式、实现自动化营销、企业商业模式革新上重塑了广告营销格局。
2024-09-30
人工智能发展前景
人工智能的发展前景十分广阔。 从历史来看,人工智能始于二十世纪中叶,最初符号推理流行,如专家系统,但因方法局限出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在当前,深度学习被发现有效,且随规模扩大预期改善,我们持续增加相关资源投入。未来,人工智能模型将作为个人助理执行特定任务,如协调医疗护理。系统将帮助构建更好下一代系统,在各领域取得科学进展。技术推动时代发展,通往智能时代需计算、能源和人类意志。若要让更多人接触人工智能,需降低计算成本,否则可能导致资源有限、战争等问题。 在产业方面,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济融合,改变生产模式和经济形态,对新型工业化等发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)。我国人工智能产业近年在多方面快速发展,形成庞大市场规模,伴随新技术迭代呈现新特点,亟需完善产业标准体系。 总之,智能时代的曙光带来机遇与挑战,虽逐步发生,但潜在正面影响巨大,未来可能实现修复气候、建立太空殖民地等伟大成就,带来巨大繁荣。
2024-09-30
最新ai应用于课堂
以下是 AI 应用于课堂的一些最新情况: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟化学实验室进行安全实验操作,并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台提供高科技实验室场景,让学生尝试复杂实验流程。 5. 生成式 AI 实现个性化教育:不再存在教育科技在有效性和规模之间的权衡,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。如 Speak、Quazel 和 Lingostar 等应用已在做实时交流并给予发音或措辞反馈。Photomath 和 Mathly 指导学生解决数学问题,PeopleAI 和 Historical Figures 通过模拟与杰出人物聊天教授历史。此外,Grammarly、Orchard 和 Lex 等工具帮助学生克服写作难题,提升写作水平。Tome 和 Beautiful.ai 协助创建演示文稿。
2024-09-30
一个用llm分析微信聊天记录的智能体案例
以下为一个用 LLM 分析微信聊天记录的智能体案例相关内容: 在当今大多数现代人工智能应用程序中,检索增强生成(RAG)是标准架构。以 Sana 的企业搜索用例为例,其过程始于应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),并通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中。 当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的流程,包含多个检索步骤和“提示链”,不同类型的任务并行执行,最终综合结果生成输出。 “智能体”(Agent)在人工智能和计算机科学领域是指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标分解、反思完善、记忆(包括短期记忆和长期记忆)、工具使用等关键组成部分。 在开发场景中,有上传客服聊天记录,充当智能客服的案例。此外,还有使用 GPT 的视觉功能和 TTS API 处理和讲述视频、GLM 等大模型外接数据库、开发微信小程序、开发知识库/聊天机器人搭建安全提示词 prompt 等相关案例。
2024-09-30
分析微信聊天记录的智能体
以下是关于分析微信聊天记录的智能体的相关信息: 从维度转换能力的角度来看,将各种问题、业务数据等转化为语言信息与语言模型交流能提高效率,但要注意对维度的理解,避免因语言的一维性导致交流偏差。 在业务助手中,主要有助手方式和业务环方式。助手方式是进行工作辅助,大模型负责优化、检索、启发等;业务环方式是大模型作为主业务流程中的一环,自动处理内容并生成结果。 像 Coze 这样的 Bot 智能体,可以实现多模态资讯的跨平台推送。其初衷是让用户拥有专属助手,精准筛选有价值信息。它以扣子为中心平台,通过自研插件、工作流和 API 链接微信群、企业微信群、飞书云文档多维表格等,能根据用户需求抓取热点资讯,分析处理并以多模态形式自动推送到不同平台。 在基于百川大模型的创作中,可将聊天记录的上下文转换为问答对,并对相邻信息做合并处理,还能根据需求筛选指定群或聊天对象的记录。聊天上下文窗口大小可依场景设置。
2024-09-30
sd提示词网站
以下是一些与 SD 提示词相关的网站和资源: MajinAI: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 在写 SD 提示词时,通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制 Stable Diffusion 的绘图。 对于新手,还有以下功能型辅助网站帮助书写提示词: http://www.atoolbox.net/ ,它可以通过选项卡的方式快速填写关键词信息。 https://ai.dawnmark.cn/ ,每种参数都有缩略图可参考,方便更直观地选择提示词。 还可以去 C 站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,可点击下面的复制数据按钮。 此外,还有“Easy Prompt Selector”插件,安装方式是在扩展面板中点击“从网址安装”,然后输入以下地址 https://github.com/bluepen5805/sdwebeasypromptselector ,然后将汉化包复制进“……\\sdwebuiakiv4\\extensions”路径文件夹下直接覆盖。安装完成后,重启 webUI,就可以在生成按钮下面看到多出来一个“提示词”按钮,点击它会出现下拉列表,里面有很多不同的分类,可根据需要选择提示词。
2024-09-30
最强的金融AI公司有哪些
目前在金融 AI 领域表现较为突出的公司包括: 1. Bloomberg:其 BloombergGPT 计划将 GPT 风格的 AI 集成到终端。 2. ServiceNow:通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率。 3. Palo Alto Networks:利用 AI 降低了处理费用的成本。 4. Hubspot:利用 AI 扩大了能够支持的用户规模。 5. 瑞典金融科技公司 Klarna:通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。 此外,金融服务行业中,现有企业由于拥有对专有金融数据的访问权限,在使用 AI 推出新产品和改进运营时具有初始优势,但会受到对准确性和隐私的高标准限制;新进入者最初可能使用公开金融数据训练模型,而后逐渐生成自己的数据,并将 AI 作为新产品分销的突破口。
2024-09-29
最好的金融科技AI模型是?
在金融科技领域,目前没有绝对意义上的“最好”AI 模型。然而,生成式 AI 在金融服务行业的应用正带来重大变革。 对于客户服务代表,经过过去 10 年银行部门客户服务通话训练的大语言模型,能帮助新代表快速生成正确答案,减少培训时间。 对于贷款员,在多个系统数据上训练的生成式 AI 模型,能让贷款员更高效准确地生成贷款文件。 对于质量保证,生成式 AI 可加速确保符合监管要求的过程。 金融服务公司利用大量历史金融数据微调大型语言模型,能迅速回答各类金融问题。比如,用公司客户聊天记录和产品规格数据训练的模型能回答产品问题,用可疑活动报告训练的模型能识别洗钱计划交易。 金融服务行业准备利用生成式人工智能实现五个目标:个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告。 在现有企业与初创公司的竞争中,现有企业因拥有专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者最初用公开金融数据训练模型,随后会生成自己的数据并将 AI 作为产品分销突破口。
2024-09-29
有俄语的文字转语音AI吗?
确实存在可以将俄语文字转换为语音的AI工具。例如,TTSMaker(马克配音)是一款免费的文本转语音工具,提供语音合成服务,支持包括俄语在内的50多种语言。此外,Toucan TTS由德国斯图加特大学自然语言处理研究所开发,支持超过7000种语言的文本到语音合成,包括俄语。这些工具可以用于视频配音、有声书朗读或商业用途,操作简便,通常只需要几步即可完成文本到语音的转换。
2024-09-29