直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
ai agent 就是 ai 工具吗
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,AI Agent 也像是在 RAG 的基础上更进一步。RAG 是给大模型一个浏览器工具使用,而 Agent 给了大模型更多工具,比如长期记忆(给大模型一个数据库工具记录重要信息)、规划和行动(在大模型的 prompt 层做逻辑,将目标拆解并输出不同的固定格式 action 指令给工具)。 总的来说,AI Agent 代表了在流程中给大模型使用工具的能力,为大模型的应用提供了更广阔的空间。例如可以让大模型安排差旅,它会判断完成目标所需步骤,搜索近期差旅记录,在相关平台预订酒店和机票,最终完成任务。
2024-09-18
我是一个程序员,想学习AI,应该怎么做
作为一名程序员想要学习 AI ,可以参考以下步骤: 1. 掌握基础知识: 学习 Python 语言,包括属性和方法、继承和多态、异常处理、文件操作等方面。 了解 AI 背景知识,如基础理论(人工智能、机器学习、深度学习的定义及关系)、历史发展、数学基础(统计学基础、线性代数、概率论)。 熟悉算法和模型,如监督学习(线性回归、决策树、支持向量机等)、无监督学习(聚类、降维等)。 2. 了解基本概念: 阅读相关资料,熟悉 AI 的术语和基础概念,了解其主要分支及相互联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 3. 开始学习之旅: 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 4. 深入特定模块: 根据自身兴趣选择 AI 领域的特定模块(如图像、音乐、视频等)深入学习。 5. 掌握提示词技巧: 提示词上手容易且实用,要熟练掌握。 6. 实践和尝试: 理论学习后通过实践巩固知识,尝试使用各种产品制作作品。 分享实践成果。 7. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 8. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,了解最新发展。 加入 AI 相关社群和组织,参加研讨会、工作坊和会议,与他人交流。 学习 AI 是长期过程,需要耐心和持续努力,别怕犯错,每个挑战都是成长机会,逐渐建立自己的知识体系并取得成就。
2024-09-18
ai 各种名词的关系图
以下是 AI 相关名词的关系和解释: 人工智能(Artificial Intelligence,简称 AI)是一种目标,让机器展现智慧。 生成式人工智能(Generative AI,简称 GenAI)是一种目标,让机器产生复杂有结构的内容。 机器学习是一种手段,让机器自动从资料中找到公式。 深度学习是一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型(Large Language Models,简称 LLMs)是一类具有大量参数的“深度学习”模型。 ChatGPT 是一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 AIGC(Artificial Intelligence Generated Content)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例。 AGI 是通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP 是自然语言处理(Natural Language Processing),就是处理人类语言。 LLM 是大型语言模型,数据规模很大,需要大量资金投入。
2024-09-18
AI PPT
以下是一些做 PPT 的 AI 产品: Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,用户可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 《》 《》 歌者 PPT(gezhe.com)是一款永久免费的智能 PPT 生成工具。用户可以轻松将任何主题或资料转化为 PPT,并选择应用大量精美的模板。无论是商务演示、教育培训、学术报告还是专业领域,歌者 PPT 都能提供便捷的操作和智能化体验,让幻灯片制作变得更加轻松高效。
2024-09-18
有没有自动生成专利申请文件的平台
以下是一些可以自动生成专利申请文件的平台: 1. Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,能提高专利申请的效率。 2. PatentPal:使用 AI 技术自动生成和编辑专利申请文件,可减少人工工作量。 在专利小助手中,还有以下插件可用于相关工作: 1. Kimi:可以用于自动生成专利申请文档的草稿、摘要或专利描述,提高文档撰写效率。 2. TreeMind 树图:可以用来创建专利结构的思维导图,帮助用户理解专利的组成部分和它们之间的关系。 3. ProcessOn 流程图:可以用于设计和展示专利申请和管理的详细流程,帮助用户理解每一步的操作和所需材料。 4. Word 文档:可以用来处理专利申请文件、专利描述、权利要求书等文档。 使用这些平台通常需要以下步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。
2024-09-18
我想通过AI快速生成专利
以下是关于通过 AI 快速生成专利的相关信息: 专利审查方面的 AI 使用步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 自动化专利申请的示例平台: 1. Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,提高专利申请的效率。 2. PatentPal:使用 AI 技术自动生成和编辑专利申请文件,减少人工工作量。 专利检索与分类:AI 可以帮助进行高效的专利检索和分类,通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。
2024-09-18
有代码基础和数学基础,帮我制定一份AI的学习计划,主要方向是数据分析、计算机视觉和AIGC
以下是一份针对您有代码基础和数学基础,以数据分析、计算机视觉和 AIGC 为主要方向的 AI 学习计划: 一、基础知识学习 1. 深入学习 AI 相关的基本概念,包括但不限于: AI(人工智能):了解其定义、发展历程和应用领域。 机器学习:掌握监督学习、无监督学习和强化学习的原理和应用。 深度学习:理解神经网络和神经元的工作原理。 2. 学习相关数学知识,如线性代数、概率论、统计学等,为后续的学习打下坚实基础。 二、数据分析方向 1. 学习数据分析的基本流程和方法,包括数据收集、清洗、预处理和可视化。 2. 掌握常见的数据分析工具和库,如 Python 的 Pandas、NumPy、Matplotlib 等。 3. 学习数据挖掘和机器学习算法在数据分析中的应用,如分类、回归、聚类等。 三、计算机视觉方向 1. 学习计算机视觉的基本概念和原理,如图像处理、特征提取、目标检测等。 2. 掌握深度学习框架,如 TensorFlow、PyTorch 等,并学习使用它们进行计算机视觉任务的开发。 3. 实践常见的计算机视觉项目,如人脸识别、图像分类、目标跟踪等。 四、AIGC 方向 1. 了解 AIGC 的发展现状和应用场景。 2. 学习生成式模型,如生成对抗网络(GAN)、变分自编码器(VAE)等。 3. 实践 AIGC 相关的项目,如文本生成、图像生成等。 五、学习资源推荐 1. 在线课程:Coursera 上的《机器学习》《深度学习专项课程》等。 2. 书籍:《机器学习》(周志华)、《深度学习》(伊恩·古德费洛等)。 3. 开源项目:在 GitHub 上寻找相关的优秀开源项目进行学习和实践。 4. 视频资源: :某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,内容硬核,值得观看。 六、实践与项目经验积累 积极参与实际项目,将所学知识应用到实际中,不断提升自己的能力。 请注意,学习是一个持续的过程,需要不断地实践和总结,祝您学习顺利!
2024-09-18
AI绘画从什么软件开始学
以下是一些关于从何处开始学习 AI 绘画的建议: 对于软件的选择,Stable Diffusion 是一个常见的选项。在学习使用 Stable Diffusion 时,您需要了解以下内容: 大模型的原理:人们将成千上万的美术风格作品练成一个模型放在 AI 里,您要选对合适的大模型才能画出符合心意的作品。大模型可以在 C 站(https://civitai.com/)下载(需要科学上网),也可以在启动器界面直接下载(但无预览图)。下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下。 VAE 的作用:它相当于给模型增加提高饱和度的滤镜和局部细节微调。有的大模型自带 VAE,若需单独下载,可放在根目录的【……\\models\\VAE】文件夹下。 此外,《AI 绘画助手》也是一个不错的学习资源,它能为不同阶段的学习者提供优质实用的指导。 同时,为您提供以下相关教程链接:
2024-09-18
AI作品是否能够商用
AI 作品能否商用取决于多种因素。 一些 AIGC 艺术家认为,好的 AIGC 作品应具备美感、创意和值得思考的故事内核。在商业应用方面,比如在广告行业等细分领域已经有一定的应用。 生成式 AI 在艺术创作领域,如 Midjourney 和 Stable Diffusion 等产品允许用户输入提示和风格,并接收独特的艺术作品。从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利都有可能性。 智谱 AI 的部分开源模型(如 ChatGLM 系列)在填写问卷进行登记后允许免费商业使用,但模型可能犯错,由于模型回答造成的后果,智谱 AI 不承担相应责任。
2024-09-18
AI生成的图片是原创吗 有没有借鉴
在全国首例 AI 生成图片著作权案例中: 法官承认依靠使用者的输出设计生成的图片属于美术作品,具有独创性和智力投入,受著作权保护,能鼓励创作,为艺术创作提供支持和新思路,节省创作成本。 根据相关法律规定,我国著作权作者仅限于自然人、法人或非法人组织,人工智能软件本身不能成为作者。 Stable Diffusion 模型根据文本指令生成图片,不是调用现成图片或排列组合预设要素,生成的图片取决于使用者输入的提示词,难以出现完全相同的两张输出图片,类似于画笔,图画构造取决于使用者设计。 人工智能不具备自由意志,使用者根据自己的审美个性,通过增删提示词、修改参数得出不同图片并选定,体现使用者的智力和独创思想,如同使用相机拍摄时的调节。 软件设计者对模型设计投入智力成果,但后续生成内容与设计者关系不大。图片由创作者根据个人意愿得出,应成为作者并享有著作权。 尽管 AI 是工具,法院强调著作权仍属于人类创作者,保护人类在知识产权领域的权益,鼓励利用 AI 技术创作艺术作品。 在未显示作者身份信息的情况下使用图片构成侵权。
2024-09-18