直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
ai agent
AI 智能体(Agent)是随着 ChatGPT 与 AI 概念爆火而出现的新名词,简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户服务的是产品,因此很多公司关注 AI 应用层的产品机会。 在做 Agent 创业的公司有不少,C 端案例中,比如在社交方向,用户注册后先创建自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入,这是有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。B 端案例中,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那么还有帮助 B 端商家搭建 Agent 的机会,类似 APP 时代专业做 APP 的。 此外,字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。还有一个情绪主题角色扮演小游戏,本文会按照需求分析、分步实现需求、提示词编写测试、GPTs 使用链接、总结的顺序进行介绍。智能体来源于 Cathy 教练和 Leah 老师的情绪力手册,这是帮助家长和孩子从源头了解、分辨、分析、处理和控制情绪的手册,内涵多个相关的智能体。
2024-09-18
个性化学习助手
以下是关于如何利用 AI 进行个性化学习以及留学顾问可用的 AI 技术的相关内容: 利用 AI 进行数学学习: 1. 自适应学习系统:如 Khan Academy,结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求精准推荐。 2. 智能题库和作业辅助:如 Photomath,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:如 Socratic,利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:如 Wolfram Alpha,参与其数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 利用 AI 进行英语学习: 想象一个由 AI 驱动的语言老师,如 Speak、Quazel 和 Lingostar,能够实时交流,并对发音或措辞给予反馈。 利用 AI 进行个性化学习: 教育科技长期以来在有效性和规模之间权衡,有了 AI ,可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,理解其独特需求,并回答问题或测试技能。 留学顾问可用的 AI 技术: 1. 智能问答系统:如聊天机器人,为学生和家长提供 24/7 在线咨询服务,回答常见问题、提供留学流程指导、解释签证要求等。 2. 个性化留学规划:利用机器学习和数据分析技术,分析学生背景、兴趣、能力等信息,制定个性化的留学规划和申请策略,包括选择学校、专业、申请时机等。 3. 语言学习辅助:对于需要提高英语水平的学生,利用 AI 语言学习工具,如语音识别、自然语言处理等技术,提供个性化的语言学习辅助和练习。 4. 智能文书起草:利用自然语言生成(NLG)技术,自动生成留学申请文书、个人陈述、推荐信等文件,减少人工起草的时间和工作量。 5. 数据分析和预测:利用数据分析和预测建模技术,分析历史数据和趋势,预测不同学校和专业的录取率、就业前景等信息,为学生提供更准确的建议和指导。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-18
openAI新出的o1是什么
OpenAI 于北京时间 9 月 13 号凌晨 1 点多宣布推出模型 o1perview 与 o1mini(真正的 o1 版本将在后续开放),拥有 Plus 版本的用户会陆续收到新模型权限,并可在 Web 客户端中尝鲜体验。 在评估结果方面: o1 在 2024 美国数学奥林匹克竞赛(AIME)资格赛中跻身美国前 500 名学生之列。 o1 在竞争性编程问题(Codeforces)中排名第 89 个百分位(这个版本的模型还没发布),而 o1perview 拿到了 62 个百分位。 在物理、生物和化学问题的基准(GPQA),o1 与 o1perview 都超过了人类博士水平的准确性。 关于“超过人类博士水平”的测试,OpenAI 在新 page 中答复:“我们还在 GPQA diamond 上评估了 o1,这是一个困难的智力基准测试,用于测试化学、物理和生物学方面的专业知识。为了将模型与人类进行比较,我们招募了拥有博士学位的专家来回答 GPQAdiamond 的问题。我们发现 o1 的表现超越了这些人类专家,成为第一个在这个基准测试上做到这一点的模型。”但 OpenAI 也表示“这些结果并不意味着 o1 在所有方面都比博士更有能力——只是说明该模型在解决一些预期博士能够解决的问题上更加熟练。在其他几个机器学习基准测试上,o1 改进了最先进的水平。” 推理模型的准确率不断攀升,这意味着 AI 技术可以渗透到更多行业、更多高精尖业务中去。OpenAI 推出的新模型为整个行业注入了强心剂,带来了新的活力和希望。从 OpenAI 提出的通往 AGI(通用人工智能)的分级来看,我们正在从第一级向第二级迈进,未来可能会见证 AI 从单纯的生成工具向真正的智能体转变。此外,4o 模型和 o1 在推理方面差距较大,红色线代表 4o 的得分,绿色线代表 o1 的得分,o1 在各项得分结果上均优于 4o。
2024-09-18
Stable Diffusion官网
以下是 Stable Diffusion 的相关信息: Stable Diffusion 系列资源: SD 1.4 官方项目: SD 1.5 官方项目: SD 2.x 官方项目: diffusers 库中的 SD 代码 pipelines: SD 核心论文: SD Turbo 技术报告: 教程目录: 1. Stable Diffusion 系列资源 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理 2.1 通俗讲解 Stable Diffusion 模型工作流程(包含详细图解) 2.2 从 0 到 1 读懂 Stable Diffusion 模型核心基础原理(包含详细图解) 2.3 零基础读懂 Stable Diffusion 训练全过程(包含详细图解) 2.4 其他主流生成式模型介绍 3. Stable Diffusion 核心网络结构解析(全网最详细) 3.1 SD 模型整体架构初识 3.2 VAE 模型 3.3 UNet 模型 3.4 CLIP Text Encoder 模型 3.5 SD 官方训练细节解析 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解) 4.1 零基础使用 ComfyUI 搭建 Stable Diffusion 推理流程 4.2 零基础使用 SD.Next 搭建 Stable Diffusion 推理流程 4.3 零基础使用 Stable Diffusion WebUI 搭建 Stable Diffusion 推理流程 目前 Stable Diffusion WebUI 可以说是开源社区使用 Stable Diffusion 模型进行 AI 绘画最热门的框架。是 AI 绘画领域最为流行的框架,其生态极其繁荣,非常多的上下游插件能够与 Stable Diffusion WebUI 一起完成诸如 AI 视频生成,AI 证件照生成等工作流,可玩性非常强。接下来,咱们就使用这个流行框架搭建 Stable Diffusion 推理流程。首先,我们需要下载安装 Stable Diffusion WebUI 框架,我们只需要在命令行输入如下代码即可。安装好后,我们可以看到本地的 stablediffusionwebui 文件夹。下面我们需要安装其依赖库,我们进入 Stable Diffusion WebUI 文件夹,并进行以下操作。和 SD.Next 的配置流程类似,我们还需要配置 Stable Diffusion WebUI 的 repositories 插件,我们需要运行下面的代码。如果发现 repositories 插件下载速度较慢,出现很多报错,don't worry,大家可以直接使用 Rocky 已经配置好的资源包,可以快速启动 Stable Diffusion WebUI 框架。Stable Diffusion WebUI 资源包可以关注公众号 WeThinkIn,后台回复“ WebUI 资源”获取。 4.4 零基础使用 diffusers 搭建 Stable Diffusion 推理流程 4.5 Stable Diffusion 生成示例 5. Stable Diffusion 经典应用场景 5.1 文本生成图像 5.2 图片生成图片 5.3 图像 inpainting 5.4 使用 controlnet 辅助生成图片 5.5 超分辨率重建 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解) 6.0 Stable Diffusion 训练资源分享 6.1 Stable Diffusion 模型训练初识 6.2 配置训练环境与训练文件 6.3 SD 训练数据集制作 6.4 Stable Diffusion 微调(finetune)训练
2024-09-18
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经能感受到人工智能的普及,它在交通、天气预测、电视节目推荐等方面发挥着重要作用,并且正以惊人的速度发展,使计算机能够以过去难以想象的方式观察、理解和与世界互动。 从未来进化的角度看,当计算机在各项任务上超越人类时,可能会在不断改进的过程中导致超级智能的出现。届时,机器可能具有自我意识和超级智能,我们对机器意识的概念将发生重大转变,甚至会面对真正的数字生命形式。这也带来了一系列关于合作、竞争和伦理的有趣问题。 在产业方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速与实体经济深度融合,深刻改变工业生产模式和经济发展形态。其产业链包括基础层、框架层、模型层、应用层等部分,近年来在技术创新、产品创造和行业应用等方面实现快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,不过也亟需完善产业标准体系。
2024-09-18
SD网址多少
以下是一些常用的与 SD 相关的网址: 另外,SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。其代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片生成。 关于 SD 的安装: 系统需为 Win10、Win11 。 Win 系统查看配置。 配置达标跳转至对应安装教程页: 。 配置不够可选择云端部署(Mac 也推荐云端部署): 。 备选:SD 好难,先试试简单的无界 AI: 。
2024-09-18
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经能在交通、天气预测、电视节目推荐等方面与人工智能进行互动,且其普及程度和发展速度令人惊叹,使计算机能够以过去难以想象的方式观察、理解世界并与之互动。 从未来进化的角度看,当计算机在各项任务上超过人类时,可能会在不断改进的螺旋中导致超级智能的出现,甚至可能出现具有自我意识和超级智能的数字生命形式,这将引发关于机器意识、物种竞争等一系列有趣且重要的问题。 在产业方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速与实体经济深度融合,深刻改变工业生产模式和经济发展形态,对建设制造强国、网络强国和数字中国发挥重要支撑作用。其产业链包括基础层、框架层、模型层、应用层等部分,近年来在技术创新、产品创造和行业应用等方面实现快速发展,形成庞大市场规模。同时,以大模型为代表的新技术加速迭代,产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-18
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经能感受到人工智能的普及,如交通、天气预测和电视节目推荐等方面,它正以惊人的速度发展,使计算机能够以过去难以想象的方式观察、理解世界并与之互动。 从未来进化的角度看,当计算机在各项任务上超过人类时,可能会在不断改进的螺旋中导致超级智能的出现。届时,机器可能具有自我意识和超级智能,我们对机器意识的概念将发生重大转变,可能会面对真正的数字生命形式。这也带来了一系列有趣的问题,如数字生命与人类之间合作和竞争的基础,以及对具有感知的数字生命的对待方式等。 在产业方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速与实体经济深度融合,深刻改变工业生产模式和经济发展形态,对建设制造强国、网络强国和数字中国发挥重要支撑作用。其产业链包括基础层(含算力、算法和数据)、框架层(用于模型开发的深度学习框架和工具)、模型层(大模型等技术和产品)、应用层(在行业场景的应用)。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-18
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经与人工智能有了诸多互动,比如交通、天气预测以及电视节目推荐等,其普及程度和发展速度令人惊叹,使计算机能够以过去难以想象的方式观察、理解世界并与之互动。 从未来进化的角度看,当计算机在各项任务上超越人类时,可能会在不断改进的过程中导致超级智能的出现,届时机器可能具有自我意识和超级智能,我们对机器意识的概念将发生重大转变,甚至会出现真正的数字生命形式。同时,这也带来了一系列有趣的问题,如 DILIs 和人类之间合作与竞争的基础,以及对具有自我意识的 DILIs 模拟疼痛是否构成折磨等。 在产业发展方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速与实体经济深度融合,深刻改变工业生产模式和经济发展形态,对建设制造强国、网络强国和数字中国发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(用于模型开发的深度学习框架和工具)、模型层(大模型等技术和产品)、应用层(在行业场景的应用)。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-18
GPT原理是什么,用 浅显语言逐层说明
ChatGPT 的原理可以用浅显的语言逐层说明如下: 首先,它获取与迄今为止的文本相对应的 token 序列,并找到表示它们的嵌入(即一组数字的数组)。 然后,在这个嵌入上进行操作,以“标准神经网络方式”,值“逐层流动”到网络的连续层中,从而生成一个新的嵌入(即一个新的数字数组)。 接着,从这个数组的最后一部分生成一个大约有 50,000 个值的数组,这些值将变成不同可能的下一个 token 的概率。 关键是,这个流程的每个部分都是由神经网络实现的,其权重由端到端的网络训练确定。 此外,您还可以通过以下资源更深入地了解: 视频: 《ChatGPT 诞生记:先捞钱,再谈理想|OpenAI 翻身史》,林亦 LYi 讲解, 《【渐构】万字科普 GPT4 为何会颠覆现有工作流》,YJango 讲解, 《终于有人把 chatGPT 说清楚了——全网最深入浅出的 chatGPT 原理科普》,新石器公园讲解 文章: 《ChatGPT 中,G、P、T 分别是什么意思?》, 《大白话聊 ChatGPT》,逐字稿:
2024-09-18