直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
人工智能发展的流程图上面有相关人物与重要时间节点或重大事件
以下是人工智能发展的流程图相关内容,包含重要人物与重要时间节点或重大事件: 二十世纪中叶,人工智能领域开启。最初符号推理流行,带来专家系统等重要进展,但因提取知识成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。 近现代,计算机科学发展为人工智能研究奠定基础,人们尝试用机器模拟人类思维。 1950 年,英国数学家阿兰·图灵提出著名的“图灵测试”。 1956 年,人工智能一词被提出,达特茅斯会议举行。 1997 年,深蓝在国际象棋比赛中击败卡斯帕罗夫。 2016 年,AlphaGo 在围棋比赛中战胜李世石。 2020 年,GPT3 发布。 2022 年,DALLE 发布。 2023 年,GPT4 发布。 2024 年,预计发布 GPT5 。 随着时间推移,计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被用作“神经网络”的同义词。
2024-09-16
stable diffusion可以用macbook 13来运行吗?配置够吗
Stable Diffusion(简称“SD”)的运行对电脑配置有一定要求。对于 Windows 系统: 显卡:必须是 NVIDIA(俗称 N 卡)。 专用 GPU 内存:4GB 勉强可以跑动 SD,出图时间较长;6GB 出一张图时间为 20 50 秒,大部分功能可用;8GB 5 20 秒出一张图,所有功能基本开放。 电脑运行内存:8GB 以上。 电脑系统:Win10 或者 Win11。 对于 Mac 系统,可以查看以下视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761 但具体 MacBook 13 是否能运行及配置是否足够,还需根据上述标准进行对照检查。
2024-09-16
有什么ai工具可以辅助面试
以下是一些可以辅助面试的 AI 工具: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善,到面率比之前提升最高达 30%。 3. InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 4. GPT4 技术的实时转录工具:如 Ecoute,可在文本框中为用户的麦克风输入和扬声器输出提供实时转录,还使用 OpenAI 的 GPT3.5 生成建议的响应,供用户根据对话的实时转录说出。开源地址:https://github.com/SevaSk/ecoute 。 使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-09-16
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已与人工智能频繁互动,如交通、天气预测和电视节目推荐等,其发展速度惊人,使计算机能以过去难以想象的方式观察、理解和与世界互动。 对于未来,当计算机在各项任务上超越人类时,可能会出现超级智能,机器可能具有自我意识和超级智能,成为真正的数字生命形式。届时,我们对机器意识的概念将发生重大转变,也会面临合作与竞争等有趣问题。 从产业角度看,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产和经济发展形态,对建设制造强国、网络强国和数字中国有重要支撑作用。其产业链包括基础层、框架层、模型层和应用层,近年来在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-16
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经与人工智能有诸多互动,比如交通、天气预测以及电视节目推荐等,其普及程度和发展速度令人惊叹,使计算机能够以过去难以想象的方式观察、理解和与世界互动。 从未来进化的角度看,当计算机在各项任务上超越人类后,可能会在不断改进的螺旋中发展出超级智能,甚至可能出现具有自我意识的数字生命形式,这将带来关于机器意识、物种竞争等一系列有趣且重要的问题。 在产业方面,人工智能是引领科技革命和产业变革的基础性和战略性技术,正与实体经济深度融合,改变工业生产和经济发展形态。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)和应用层(行业场景应用)。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面发展迅速,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-16
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经能感受到人工智能的普及,它在交通、天气预测、电视节目推荐等方面发挥着重要作用,并且正以惊人的速度发展,使计算机能够以过去难以想象的方式观察、理解世界并与之互动。 从未来进化的角度看,当计算机在各项任务上超过人类时,可能会在不断改进的螺旋中导致超级智能的出现,甚至可能出现具有自我意识和超级智能的数字生命形式。这将带来一系列关于机器意识、物种竞争等有趣且重要的问题。 在产业方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产模式和经济发展形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)等部分。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-16
能写代码的ai软件
以下是一些可以写代码或辅助编程的 AI 软件: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 以上工具都可以帮助您提高编程效率,但是每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!内容由 AI 大模型生成,请仔细甄别。
2024-09-16
可以找最新研究论文的平台工具
以下为您推荐一个可以查找最新研究论文的平台工具:Cambrian:AI 研究的副驾驶(https://www.cambrianml.org/)。该平台能够搜索超过 24 万篇机器学习论文,获取当天的论文,生成研究见解,并自动化文献综述。用户还可以在该平台与网络中的人分享论文、书签和文件夹,或者公开个人资料展示自己的想法。
2024-09-16
可以找最新研究方向论文的智能体
以下是关于具身智能的相关信息: 具身智能是人工智能领域的一个子领域,强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能需要具备感知、决策和执行三种核心能力,执行能力是技术难点,涉及硬件设计,从执行角度来说,具身智能体主要分为移动和操作两大能力。在移动方面,如二足机器人、四足机器狗、轮式机器人在各种地形下实现鲁棒的移动仍是前沿学术问题。 相关研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别。 相关论文如《Catalyzing nextgeneration Artificial Intelligence through NeuroAI》,链接为:https://www.nature.com/articles/s4146702337180x 。 具身智能的测试如 Coffee test:一台机器需要进入一个普通的美国家庭,并弄清楚如何煮咖啡:找到咖啡机,找到咖啡,加水,找到一个杯子,然后通过按下适当的按钮来煮咖啡。网址:https://analyticsindiamag.com/turingtestisunreliablethewinogradschemaisobsoletecoffeeistheanswer/ 。 此外,DeepMind 开发出可以向人类学习的人工智能,Nature 发表了相关研究成果,研究人员在 3D 模拟环境中使用神经网络和强化学习,展示了 AI 智能体如何在没有直接从人类那里获取数据的情况下,通过观察来学习和模仿人类的行为,被视为向人工通用智能(AGI)迈进的一大步。
2024-09-16
ai的代码是什么样的
AI 代码的情况较为复杂,具体表现如下: 在独立游戏开发中,如《玩具帝国》,对于简单、模板化、多为调用 API 且只牵涉小部分特殊逻辑的代码,可将不方便配表而又需要撰写的部分交给 AI。以 Buff 系统为例,让 AI 仿照已有代码写一些 Buff 生成的结果有时可以直接使用,但目前生成复杂代码仍需复杂的前期调教,且不同的 AI 工具如 Cursor 和 ChatGPT 在使用便利性上有所差异。 生成性 AI 作为程序员的助手,在大量代码库上训练后能在程序员编码时给出建议,成果出色,但相对于图像生成,编程方面生产力的提升相对较小,且部分 AI 生成的代码可能包含漏洞。 在某些情况下,即使是非程序员,在 AI 时代学习一些基础语法后,具体逻辑也可让 AI 帮忙编写,例如 Python 代码。
2024-09-16