直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经与人工智能有了诸多互动,比如交通、天气预测以及电视节目推荐等,其普及程度和发展速度令人惊叹,使计算机能够以过去难以想象的方式观察、理解和与世界互动。 从未来进化的角度看,当计算机在各项任务上超越人类时,可能会在不断改进的螺旋中导致超级智能的出现,甚至可能出现具有自我意识和超级智能的数字生命形式,这将带来关于机器意识、物种竞争等一系列有趣且重要的问题。 在产业方面,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产模式和经济发展形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)、应用层(行业场景应用)等部分。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-02
人工智能发展前景
人工智能的发展前景十分广阔。在我们的日常生活中,许多方面都已经有了人工智能的参与,比如交通、天气预测以及电视节目推荐等,其普及程度和发展速度都令人惊叹,使计算机能够以过去难以想象的方式观察、理解和与世界互动。 从未来进化的角度看,当计算机在各项任务上超越人类时,可能会在不断改进的过程中出现超级智能。届时,机器可能会具有自我意识和超级智能,我们对机器意识的概念将发生重大转变,甚至会出现真正的数字生命形式。这也带来了一系列有趣的问题,比如数字生命与人类之间合作和竞争的基础,以及对具有自我意识的数字生命模拟疼痛是否构成折磨等。 在产业发展方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速与实体经济深度融合,深刻改变工业生产模式和经济发展形态,对建设制造强国、网络强国和数字中国发挥重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(用于模型开发的深度学习框架和工具)、模型层(大模型等技术和产品)、应用层(在行业场景的应用)等部分。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-02
有没有能够帮助我的生活做决策的机器人ai
以下是一些能够帮助您在生活中做决策的 AI 相关内容: 1. 零代码自建决策助手: 敏感性分析:通过调整不同因素的权重,检验决策是否稳健。若轻微权重变化导致结果显著改变,可能需重新评估分析过程或收集更多信息。 情感检验:个人感受是重要考虑因素,需反思对每个选项的情感反应,并考虑其与理性分析的一致性。 提供最终决策建议:基于前面的所有分析,提出综合建议,包括选择理由、潜在风险、注意事项等。 2. 智能体的应用: 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 3. 专门为协助特定任务而设计的 AI 驱动工具和教练: 可以帮助搭配服装。 可以提供职业建议。 可以提升沟通能力。 相信未来每个人都可能拥有理解生活独特背景的个性化聊天机器人,在面临生活变化时,如离婚、上大学或生孩子等,能够得到最有共鸣的建议,还能寻求支持或指导以实现各种目标,如更多地锻炼或改善财务状况。
2024-09-02
How Al Agentic workflows could drive more Al progress than even the next generation of foundation models
以下是关于您提出的“ How Al Agentic workflows could drive more Al progress than even the next generation of foundation models ”问题的相关信息: 吴恩达认为人工智能代理工作流程将在今年推动人工智能的巨大进步,甚至可能超过下一代基础模型。构建代理的设计模式框架包括反思、工具使用、规划和多代理协作。反思是指 LLMs 审视自身工作并提出改进方法;工具使用是指赋予 LLMs 如网络搜索、代码执行等工具以帮助其收集信息、采取行动或处理数据;规划是指 LLMs 制定并执行多步骤计划以实现目标;多代理协作则涉及多个 AI 代理共同工作,通过分工、讨论和辩论来提出比单个代理更好的解决方案。这些设计模式为构建高效的 AI 代理提供了指导,并将在下周进一步详细阐述并提供相关阅读建议。 此外,在医疗保健领域,为了产生真正的改变,AI 需要像我们一样学习。必须让这些专家 AI 接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。 在 AI 进化方面,CNN 的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步。
2024-09-02
attention是什么
Attention(注意力)是一种在自然语言处理和相关领域中广泛应用的机制,具有以下特点和作用: 1. 在 Transformer 模型中,注意力头是一种“回顾”token 序列(即迄今为止产生的文本)的方式,并将“过去的内容”以有助于找到下一个 token 的形式打包。它允许“关注”甚至更早的单词,从而潜在地“捕获”和利用先前的词,例如动词可以引用在它们之前许多个单词的名词。 2. 注意力机制允许文本模型在决定如何翻译输出句子中的单词时“查看”原始句子中的每一个单词。通过观察成千上万的训练数据,模型学会在每个时间步长中应该“注意”哪些单词,学会遵守词语的语法规则等。 3. 注意力头所做的是重新组合与不同 token 相关的嵌入向量中的块,带有某些权重。经过注意力头处理后,生成的“重新加权嵌入向量”会通过标准的“全连接”神经网络层传递。
2024-09-02
介绍下国内智能体的水平
目前国内智能体的发展取得了显著成果。 智谱清言是国内具有代表性的智能体之一。它由智谱 AI 和清华大学联合推出,其基础模型为 ChatGLM 大模型。在技术方面,智谱 AI 具有开创性,模型质量出色,背后的技术源自清华大学研发团队的科研成果转化。在产品设计上对标 ChatGPT,努力打造类似的用户体验。在能力表现上,智谱清言在逻辑推理和处理复杂提示词方面具有明显优势,工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三,更擅长专业能力,但在代码能力上还有优化空间,知识百科方面与其他第一梯队模型相比稍显不足。其应用场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景,在较复杂推理应用和广告文案、文学写作方面效果不错。 此外,腾讯元器和字节扣子也是国内智能体领域的重要参与者。字节扣子于 2 月 1 日正式推出,是用于开发下一代 AI 聊天机器人的构建平台。 总的来说,国内智能体发展迅速,具有很大的潜力和竞争力。
2024-09-02
AI发展史
AI 的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示和自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,设计了 ACE(Automatic Computing Engine 自动计算引擎),这被视为机器智能的起源。随着对大脑工作机制认知的增加,神经网络的算法和模型也不断进步。例如,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。
2024-09-02
AI发展史
AI 的发展历程主要包括以下几个阶段: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):重点在于专家系统、知识表示和自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,并设计了 ACE(Automatic Computing Engine 自动计算引擎)。这被视为机器智能的起源。 在神经网络方面,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。每次对大脑工作机制的更多认知,都会推动神经网络的算法和模型向前发展。
2024-09-02
如何使用LLM分析企业的私有化数据,是否有工具推荐?
以下是关于使用 LLM 分析企业私有化数据及工具推荐的相关内容: RAG 加速器提供了数据抽取服务,这是基于 LLM 的解决方案。在利用 LLM 进行信息抽取时,需要了解构建抽取服务的基本组件和要点。 实现过程中,有两个简单但强大的思路可以提升性能: 1. 确保 LLM 以正确的格式回应。函数调用已成为确保 LLM 严格输出特定格式的新且相对靠谱的方法,可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。 2. 使用参考样例。尽管没有样例也能设置抽取问题,但实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,有时这些样例比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中,可以找到更多细节,助您从 LLMs 中提取更好的性能。
2024-09-02
AI建筑建模
以下是一些能够帮助建筑设计师审核规划平面图的 AI 工具: 1. Fast AI 人工智能审图平台:从住宅设计图的构件开始,形成一套集“自动导入设计图”、“自动区域划分、构件识别、强条审查”、“自动导出结果”于一体的全自动智能审图流程,同时为建筑信息自动建模打下基础,最终将规划设计、施工、运维管理等建筑全寿命周期内的所有信息集成在一起,实现数据的汇总与管理。 2. HDAidMaster:云端工具,建筑师可在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作,在建筑设计、室内设计和景观设计三个领域表现惊艳,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和建筑设计成果颜值在线。 3. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 4. ARCHITEChTURES:AI 驱动的三维建筑设计软件,为设计师提供全新设计模式,在住宅设计早期阶段可引入相关标准和规范约束 AI 生成的设计结果,保证设计合规性。 每个工具都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的工具。 此外,在独立游戏开发中,对于 AI 绘画,为丰富训练集,可先进行较短时间的训练,用得到的模型生成与目标画风类似的建筑、风景图像,再放回训练集。还可做正则化,模型出来后,复杂的图可先去掉微调模型用底模生图,然后用 ControlNet 加上微调模型出新图。该模型在美术做设计参考时也能使用。
2024-09-02