直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
现在ai发展到什么程度了
目前 AI 的发展呈现出多方面的特点和进展: 1. 在通用人工智能(AGI)方面,尚未取得巨大进展,但 OpenAI 等机构提出了 AGI 的五个发展等级,包括聊天机器人、推理者、智能体、创新者和组织。其中,聊天机器人具备基本对话能力,推理者能解决复杂问题,智能体可执行全自动化业务但仍需人类参与,创新者能协助人类完成新发明,组织则能自动执行全部业务流程。 2. 在应用方面,ANI(弱人工智能)得到了巨大发展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 3. 大模型方面,开源大模型爆发,未来 AGI 竞争的关键在于云端超级大模型,但通用大模型也面临瓶颈,如算力和知识不足的问题。 4. 机器学习方面,监督学习因数据增长、神经网络规模发展和算力提升而快速发展。 5. 数据方面,数据集是由数据组成的集合,分为结构化和非结构化数据,获取数据的方式包括手动标注、观察行为和网络下载,同时需要有效处理数据中可能存在的不正确和缺失等问题。
2025-01-07
如何系统学习API知识
系统学习 API 知识可以从以下几个方面入手: 1. 首先,要对 API 的概念有清晰的理解。API 就像是一个信差,它接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 2. 系统地了解和学习 API 相关的知识。 3. 去网上寻找可以用的 API 来练习。 4. 发掘 GPT Action 更多的潜力。 5. 构建自己的知识体系。可以通过后续看到的不同的教程和资料,识别这些知识之间的共性和逻辑关系,然后继续深化对这个主题的理解。 6. 对于一些不熟悉的 API,需要在 Prompt 里告诉它要怎样使用。 7. 最后提炼一下 Action 的工作流:首先,想一下您想要做一个什么样的 GPT,以及是否需要外部数据(这两个谁先谁后不重要);然后,去您需要的外部数据寻找 API 文档,或者基于您的需求,自己开发一个 API,寻找市面上可以直接用的 Action;最后,基于 API 文档,编写 Action 里的 Schema,和 Prompt(如何处理取回来的信息)。 同时,在使用 API 时还需要注意以下几点: 1. 对于文本补全(Text completion),该 API 能够理解文本的上下文并以不同方式重新表述它。 2. 限制 API 制造答案可能性的方法有:为 API 提供基础事实信息;使用较低概率并告诉 API 如何说“我不知道”。 3. 对于涉及理解或生成代码等任务,建议使用 Codex 模型处理。
2025-01-07
API是什么意思
API 就像是一个信差,它接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 以搜索“奥本海默”电影为例,在这个过程中,通过特定的网址(如 https://www.themoviedb.org/search?query=奥本海默 ),其中域名(www.themoviedb.org)指定了网站的位置,路径(/search)指定了特定页面的位置,而 query(奥本海默)则是查询参数。 在 GPT 中,它可以通过预先配置的 Action 里的 TMDB API 获取电影相关的专有信息。当您询问“奥本海默”这部电影讲了什么时,GPT 会识别您的意图,使用 Action 去 The Movie DB 寻找相关数据,处理并返回最终结果。 配置一个 Action 通常需要:Schema(相当于操作手册,告诉它可以去哪、干什么、需要准备什么)、Available actions(可用行动)、Authentication(认证)、Privacy policy(隐私政策)。但 Schema 的结构可能涉及前端工程师相关领域的知识。 如果您对 Action 很感兴趣,可以从系统学习 API 相关知识、寻找可用的 API 练习、发掘 GPT Action 更多潜力等方向继续深入。
2025-01-07
大模型的实际应用有哪些?Agent?AI网站
大模型的实际应用包括以下方面: 1. 在影刀 RPA+AI Power 中的应用: 集成丰富的 AI 组件及各种技能组件,拓展 AI 服务的能力边界,打造 AI Agent。例如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现 AI 自动化操作。 提供网页分享、对话助理、API 集成等无缝多样的使用方式,方便企业在不同业务场景下灵活选择接入方式,让内部员工、外部客户便捷地与 AI 交互。 为企业提供教学培训、技术答疑、场景共创等贴身的服务支持,帮助企业把产品用起来,把 AI 落地下去。 2. 在 Ranger 相关介绍中的应用: Agent 被认为是大模型未来的主要发展方向。 中间的“智能体”就是大模型,通过为其增加工具、记忆、行动、规划四个能力来实现。目前行业里主要用到的是 langchain 框架,在 prompt 层和工具层完成相关设计。 3. 在大圣的相关介绍中的应用: 大模型的产品类型主要有 Copilot 和 Agent 两种。 Copilot 是辅助驾驶员,在帮助用户解决问题时起辅助作用,更多地依赖于人类的指导和提示来完成任务,功能局限于给定框架内,处理流程依赖于人类确定的静态流程,主要用于处理简单、特定的任务,开发重点在于 Prompt Engineering。 Agent 是主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更高的自主性和决策能力,解决问题的流程是由 AI 自主确定的动态流程,能够处理复杂、大型的任务,在 LLM 薄弱阶段使用工具或 API 增强,开发重点在于 Flow Engineering。
2025-01-07
视频面部替换 有什么工具推荐?
以下是为您推荐的视频面部替换工具: 1. 三思教程:https://www.xiaohongshu.com/explore/666e8bfc00000000060044aa 2. 白马少年文生图教程:https://www.xiaohongshu.com/explore/6669d3c9000000000e0300fb 3. 阿米的 VB 工作流拆解:https://www.xiaohongshu.com/explore/66699475000000000e0325cf 4. 红泥小火炉的 VB 工作流拆解:https://www.xiaohongshu.com/explore/66699e13000000000d00d236 5. 岳超楠:AI 教程丨教您如何用 comfyUI 修复脸部:https://www.xiaohongshu.com/explore/666be3ed0000000006004d88 6. guahunyo 老师的工作流: 7. Dreamina 图片生成功能:https://dreamina.jianying.com/aitool/image/generate ,上传深度图,选择适应画布比例并填写描述
2025-01-07
视频换脸有什么工具推荐?
以下为您推荐一些视频换脸工具: 1. TecCreative: 操作指引:上传原始视频——上传换脸图片——点击生成。 2. Viggle(有免费额度): 网址:http://viggle.ai discord 免费体验:https://discord.com/invite/viggle 功能: /mix:将角色图像混合到动态视频中。操作步骤:上传一张字符清晰的图片,上传一段清晰运动的视频。 /animate:使用文本运动提示为静态角色设置动画。操作步骤:上传一张字符清晰的图片,描述您想让角色做的动作(也可以从 https://viggle.ai/prompt 中复制动作提示词)。 /ideate:纯粹从文本创建角色视频。操作步骤:描述您想要创造的角色,描述您希望角色执行的动作(或从 https://viggle.ai/prompt 中复制动作提示词)。 /character:通过文本提示创建角色并将其动画化。操作步骤:描述您想要创造的角色,从四个结果中选择一个图像,描述您希望角色执行的动作(或从 https://viggle.ai/prompt 中复制动作提示词)。 /stylize:使用文本提示符重新设计角色的样式并将其动画化。操作步骤:上传一张字符清晰的图片,描述您想改变角色的任何地方来重新塑造它,从四个结果中选择一个图像,描述您想要角色做的动作(或者从 https://viggle.ai/prompt 中复制动作提示词)。 官方提供了多种动作提示词可供参考,提示词地址:https://viggle.ai/prompt 3. 插件 ADetailer: 首先要明白插件原理是识别面部对面部进行扩散,里面可以增加 controlnet 去控制。 操作步骤: 打开 Adetailer,选择模型是关于脸部修复的,选择最常用的模型,在对应的正向提示词中添加一些面部的修饰词,也可以加 lora。 在检测一栏基本上维持默认不变,效果不好适当拉高阈值。 在蒙版处理维持默认不变。 在重绘选项卡中,关注以下参数: 重绘使用的模型、重绘使用的 VAE 以及重绘制使用的采样方式。 局部重绘制强度,推荐 0.5 左右,可自行尝试。 Controlnet,和外面用的一样也是增加控制的,选择最适合的,若用 tile 模型要适当调整权重或者调整引导于结束的步数。
2025-01-07
Video-LLaVA与多模态图像视频识别
以下是对 26 个多模态大模型的全面比较总结: 1. Flamingo:是一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本作为输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到多模态(MM)领域,为解决数据稀缺问题,引入使用 ChatGPT/GPT4 创建的新型开源 MM 指令跟踪数据集及基准 LLaVABench。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,能复制 GPT4 展示的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含用于评估的 OwlEval 教学评估数据集。 6. XLLM:陈等人将其扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性成功应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域未来研究制定标准,并为学术界和工业界提供协议。
2025-01-07
解释AI大模型和各种AI网站的关系
AI 大模型是一种具有大规模参数和强大能力的模型。 AI 网站通常会提供各种与 AI 相关的服务和工具,例如: 1. 提供多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN 等。 2. 包含模型社区,为大模型提供数据、企业模型和算力服务,有按任务划分的模型库、数据集和在线应用供体验。 3. 拥有 AI 工程平台,对模型和应用有要求,像 define 是典型的工程平台,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。 总之,AI 网站是展示和应用 AI 大模型的平台,通过这些网站,用户可以接触和使用到基于 AI 大模型开发的各种功能和服务。
2025-01-07
AI智能数据库查询助手
以下是关于您提出的“AI 智能数据库查询助手”的相关信息: 能联网检索的 AI: 存在能联网检索的 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如: ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,旨在简化您的在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 AI 新产品|网站精选推荐: AIHelperBot 自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://skybox.blockadelabs.com/ ChartGPT by CadLabs 由 CadLabs 开发工具,基于 GPT3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/ Embedding Store 功能如其名,是一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/ AI 在医疗药品零售领域的应用: AI 在医疗药品零售领域有着多方面的应用前景: 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-07
AI翻译
以下是关于 AI 翻译的相关内容: 吴恩达开源了一个基于 AI 原理的翻译项目,项目地址是 https://github.com/andrewyng/translationagent 。通过该项目所采用的反思优化机制,可以显著提升 AI 翻译的质量。普通用户可在 Coze 平台上尝试复刻此项目,按照教程简单操作就能打造出属于自己的高质量 AI 翻译助手,也可直接使用已发布好的翻译器 Bot 。 吴恩达的 AI 翻译项目核心流程分为三个步骤:初始翻译、识别可优化点、对初始结果进行优化。 Coze 的 AI 应用与网页应用架构类似,包括前端页面用于用户输入或上传,数据处理端处理前端数据,处理完成的数据有展示在前端或保存到数据库/知识库供查询两种路径。搭建 Coze 的 AI 应用需关注前端页面构建、页面数据传递给工作流或插件、工作流处理数据返回前端展示这三个方面。以 AI 翻译应用为例,应掌握前端的基本结构,如页面、组件、Form 表单、Div 容器、文本框等及相关事件,还有表单向工作流传递数据、工作流数据返回前端组件展示的方法。 此外,还有骏老师关于如何用 AI 学习英语的分享,包括实战心得直播及相关文档地址。同时也提到了一些关于文案写作和自用长文本中译英 Prompt 的实例。
2025-01-07