「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
有什么ai剪辑软件
以下是一些常见的 AI 剪辑软件: Opusclip:可将长视频剪成短视频。 Raskai:能将短视频素材直接翻译至多语种。 InvideoAI:输入想法后自动生成脚本和分镜描述,进而生成视频,还可人工二编并合成长视频。 Descript:通过屏幕或播客录制,以 PPT 方式做视频。 Veed.io:具备自动翻译和自动字幕功能。 Clipchamp:微软的 AI 版剪映。 Typeframes:类似 InvideoAI,内容呈现文本主体比重更多。 Google vids:目前还不太成熟。 国内的可以使用出门问问的魔音工坊,其具有情绪调节控件。 对于不同需求和使用场景,选择也有所不同: 对于 13 分钟的短片,剪映比较方便,它有很多人性化的设计以及简单的音效库/小特效。 对于更长篇幅或追求更好效果的视频,可能需要使用 PR/FCP/达芬奇等传统剪辑软件。 以下是一些相关网站及特点: |网站名|网址|费用|优势/劣势|教程| |||||| |Runway|https://runwayml.com| |有网页有 app 方便|| |haiper|https://app.haiper.ai/|免费| | | |SVD|https://stablevideo.com/|有免费额度|对于景观更好用|| |Pika |https://pika.art/ |收费 https://discord.gg/pika|可控性强,可以对嘴型,可配音|| |PixVerse|https://pixverse.ai/ |免费|人少不怎么排队,还有换脸功能|| |Dreamina |https://dreamina.jianying.com/|剪映旗下|生成 3 秒,动作幅度有很大升级|| |Morph Studio|https://app.morphstudio.com/| |还在内测| | |Heygen|https://www.heygen.com/| |数字人/对口型| | |Kaiber|https://kaiber.ai/| | | | |Moonvalley|https://moonvalley.ai/| | | | |Mootion|https://discord.gg/AapmuVJqxx| |3d 人物动作转视频| | |美图旗下|https://www.miraclevision.com/| | | | |Neverends|https://neverends.life/create|2 次免费体验|操作傻瓜| | |SD|Animatediff SVD deforum|免费|自己部署| | |Leiapix|https://www.leiapix.com/|免费|可以把一张照片转动态| | |Krea|https://www.krea.ai/|12 月 13 日免费公测了| | | |luma||30 次免费| | | |Kling|kling.kuaishou.com| | ||
2024-09-13
AI的发展历程
AI 的发展历程主要分为以下几个阶段: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示和自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术成为主流。 AI 绘画的发展历程显示,从早期的机械臂机器人到当前的大语言模型,技术的进步使得 AI 绘画在创作质量和速度上取得了新的突破。这种技术进步不仅为艺术家提供了新的工具和可能性,也推动了传统艺术的数字化和普及化。 关于大模型,随着其技术愈发成熟、规模增大,为 AI Agent 提供了强大能力。Agent + 大模型有望构建具备自主思考、决策和执行能力的智能体,进一步提升大模型的应用能力,并广泛应用于多个行业和领域。
2024-09-13
AI 增量训练 Lora
以下是关于 AI 增量训练 Lora 的相关知识: 参数理解: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。理论上讲,图片精细度越高,学习步数越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮为一次循环,循环次数一般在 10 20 之间。次数并非越多越好,过多会导致过拟合,即画什么都和样图一样。 3. 效率设置:主要控制电脑的训练速度。可保持默认值,也可根据电脑显存微调,但要避免显存过载。 总的训练步数为:图片张数×学习步数×循环次数。 此外,沃尔夫勒姆提到人工智能是基于机器学习(通常通过神经网络实现),根据给出的示例进行增量训练,且这些示例包括大量人类生成的科学文本等,或者关于世界上发生的事情的实际经验。
2024-09-13
AI 增量训练和模型微调的区别
AI 增量训练和模型微调存在以下区别: 目的:增量训练通常是为了持续更新模型以适应新的数据和任务,而模型微调主要是为了使模型在特定的小领域数据集上针对特定任务达到更好的性能。 范围:增量训练可能涉及对模型的较大范围的更新,而微调往往集中在较小范围的参数调整。 方式:增量训练可能会对全量的模型参数进行训练,而微调存在全量微调(FFT)和参数高效微调(PEFT)两种技术路线,PEFT 只对部分模型参数进行训练,且目前在业界较为流行。 成本和效果:从成本和效果综合考虑,PEFT 是较好的微调方案。微调可以大幅提高模型在特定任务中的性能,但可能会使模型失去一些通用性。 数据使用:增量训练可能需要更多新的数据,而微调是在较小的、特定领域的数据集上进行。 如需了解更多关于微调的内容,可参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-09-13
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经能感受到人工智能的普及,比如交通、天气预测以及电视节目推荐等方面,它正以惊人的速度发展,使计算机能够以过去难以想象的方式观察、理解世界并与之互动。 从技术进化的角度看,当计算机在各项任务上超过人类时,可能会在不断改进的过程中导致超级智能的出现,甚至可能出现具有自我意识和超级智能的数字生命形式,这将使我们对机器意识的概念发生重大转变,也会带来关于物种竞争、合作等有趣的问题。 在产业方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速与实体经济深度融合,深刻改变工业生产模式和经济发展形态。我国人工智能产业在技术创新、产品创造和行业应用等方面实现快速发展,形成庞大市场规模。其产业链包括基础层、框架层、模型层、应用层等部分,近年来伴随以大模型为代表的新技术加速迭代,呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。
2024-09-13
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已与人工智能频繁互动,如交通、天气预测和电视节目推荐等,其普及程度和发展速度令人惊叹,使计算机能以过去难以想象的方式观察、理解和与世界互动。 对于未来,当计算机在各项任务上超越人类时,可能会在不断改进的进化螺旋中出现超级智能。届时,机器可能具有自我意识和超级智能,我们对机器意识的概念将发生重大转变,甚至可能出现真正的数字生命形式。这也带来了一系列有趣的问题,如数字生命与人类之间合作和竞争的基础,以及对具有感知的数字生命的对待方式。 从产业角度看,人工智能是引领科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产和经济发展形态,对新型工业化、制造强国、网络强国和数字中国建设有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)和应用层(行业场景应用)。近年来,我国人工智能产业在技术创新、产品创造和行业应用方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-13
大模型训练的数据形式
大模型训练的数据形式主要包括以下方面: 1. 数据来源广泛:往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等。 2. 数据类型多样:包括文本、图像、音频等多模态数据。 3. 数据规模庞大:一般使用 TB 级别的数据进行预训练。 例如,对于大语言模型(LLM),通常使用 Transformer 算法,以大量的文本数据进行训练。而多模态模型,如文生图、图生图等模型,则使用图文或声音等多模态的数据集进行训练。
2024-09-13
室内空间设计AI软件推荐
以下为您推荐一些室内空间设计相关的 AI 软件: 1. HDAidMaster:这是一款云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索,能根据输入的房间面积需求和土地约束自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入相关标准和规范约束设计结果。 此外,还有一些可以辅助创建 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD:能根据输入的设计目标和约束条件自动生成 3D 模型。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 关于使用 AI 进行室外设计的最佳实践: 1. 充分利用 AI 的创意生成能力,输入关键词生成多种创意设计方案,获取新颖独特的灵感。 2. 结合 AI 的模拟和可视化功能,利用 AR/VR 等技术模拟和可视化设计方案。 3. 运用 AI 的分析和优化能力,对采光、动线、材料等方面进行优化。 4. 借助 AI 的自动化设计功能,自动生成符合设计规范的平面图、立面图等。 5. 融合 AI 与人工设计的协作模式,形成良性互补,发挥各自优势。
2024-09-13
文本生成PPT
以下是关于文本生成 PPT 的相关内容: 超全的 AI 工具生成 PPT 的思路和使用指南:点击文本转 PPT,并在提示框中选择确定,即可得到转换后的 PPT,还可在线编辑。 做 PPT 的 AI 产品:讯飞智文是由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能,提高文档编辑效率。网址:https://zhiwen.xfyun.cn/ 。目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作:AI 生成 PPT 大纲、手动优化大纲、导入工具生成 PPT、优化整体结构。 推荐文章:《》 成熟案例参考: step 1(根据 PPT 大纲助手 GPTs 生成 PPT 大纲):https://chat.openai.com/g/gOKorMBxxUpptdagangzhushou step 2(根据输入文本生成 PPT 内容 GPTs 生成 PPT 内容):https://chat.openai.com/g/gYJs9jxVBHshuruwenbenshengchengpptneirong step 3(将生成的内容复制到 Marp Web 渲染简洁的 PPT):https://web.marp.app/
2024-09-13
多模态大模型
Google 的多模态大模型叫 Gemini,是由 Google DeepMind 团队开发的。它不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 以下是 26 个多模态大模型的部分介绍: XLLM 陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用 QFormer 的语言可迁移性,XLLM 成功应用于汉藏语境。 VideoChat 开创了一种高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。 InstructBLIP 基于预训练的 BLIP2 模型进行训练,在 MM IT 期间仅更新 QFormer。通过引入指令感知的视觉特征提取和相应的指令,该模型使得能够提取灵活多样的特征。 PandaGPT 是一种开创性的通用模型,能够理解 6 不同模式的指令并根据指令采取行动:文本、图像/视频、音频、热、深度和惯性测量单位。 PaLIX 使用混合 VL 目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。事实证明,这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。 VideoLLaMA 张引入了多分支跨模式 PT 框架,使 LLMs 能够在与人类对话的同时同时处理给定视频的视觉和音频内容。该框架使视觉与语言以及音频与语言保持一致。 随着 ChatGPT 的蓬勃发展,大型模型正深刻地影响着各个行业。多模态技术作为行业前沿突飞猛进,呈现出一统计算机视觉(CV)和自然语言处理(NLP)的势头。有一款基于多模态大型模型的应用能够迅速解释现实世界,将手机置于车载摄像机位置,能实时分析当前地区今年新春的最新流行趋势。该应用后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入,整体设计以简单高效为主。
2024-09-13