「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
RAG和微调是什么,分别详细讲讲一下它是怎么实现的
RAG(RetrievalAugmented Generation,检索增强生成)是解决大语言模型在实际应用中存在的一些问题的有效方案。 大语言模型存在以下问题: 1. 知识的局限性:模型自身的知识完全源于训练数据,对于实时性、非公开或离线的数据无法获取。 2. 幻觉问题:基于数学概率的文字预测导致可能提供虚假、过时或通用的信息。 3. 数据安全性:企业担心私域数据上传第三方平台训练导致泄露。 RAG 可以让大语言模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解模型如何生成最终结果。它类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新的语言、格式或样式。 微调类似于让学生通过广泛学习内化知识。这种方法在模型需要复制特定结构、样式或格式时非常有用。微调可以提高非微调模型的性能,使交互更有效率,特别适合强调基础模型中的现有知识,修改或自定义模型的输出,并向模型提供复杂的指令。然而,微调不适合合并模型中的新知识或需要新用例的快速迭代。 参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2025-02-19
AI绘画
AI 绘画对艺术界具有复杂且双面的影响: 积极方面: 改变传统艺术面貌,从生成艺术作品到辅助艺术创作。 技术进步使创作质量和速度取得突破,推动传统艺术数字化和普及化。 为艺术家提供新工具和可能性,帮助探索新创意表达方式,提高制作效率,降低制作成本。 促进艺术与观众互动,提供个性化和互动的艺术体验。 存在的问题: 人们对 AI 创作的艺术品和人类创作的艺术品接受程度相同,但不太愿意将 AI 视为艺术家,其在表达情感和创造性意图方面存在局限性。 引发艺术家对版权、原创性和伦理问题的担忧。 带来文化创意领域从业者职业安全的焦虑和“侵权”嫌疑的反对之声,挑战现有法律和伦理框架。 AI 绘画的关键词指南: 公式:主题+环境(背景、周围)+气氛(烈日下、雾蒙蒙、恐怖的、风暴席卷的)+灯光(顶光、雾气光、漫反射的、强对比的)+色彩(低饱和度、颜色鲜艳的、花里胡哨的、强反射的主色调、某种颜色是 accent color)+构图(黄金分割、三分法的、电影镜头、广角、鸟瞰图)+风格参考(超清细节的、照片级别的、写实的、抽象的、2D/3D、4k8k、数字雕刻、概念艺术、水墨、水彩、海报、某个软件、某个游戏、艺术家、艺术平台) 比如:找自己喜欢的艺术家风格放入风格参考关键词,喜欢的灯光风格放入灯光关键词,喜欢的颜色和调色板风格放入色彩关键词。 艺术与科技的融合: 呈现奇妙景象,AI 绘画将艺术与先进技术完美结合,引领艺术界走向未来。 利用机器学习和深度学习模拟人类创作过程,生成令人惊叹的作品,为艺术家提供新工具和全新体验。 打破传统手工绘画技巧局限,通过编程、算法和数据分析开拓新创作领域,使艺术更民主化和包容。
2025-02-19
原生稀疏注意力
原生稀疏注意力(Native Sparse Attention,NSA)是一种高效的超长上下文方案。DeepSeek 最新论文提出了这一机制,它通过压缩、选择和滑动窗口三种机制,提升了计算效率。在训练和推理阶段均有显著效果,前向传播速度提高 9 倍,解码速度提升 11.6 倍。其核心在于聚焦重要信息,优化注意力机制,能够训练出更聪明的模型,甚至在推理任务中表现优异。
2025-02-19
ai初学者可以学习哪些课程
对于 AI 初学者,以下是一些可以学习的课程: 1. 特定的机器学习云框架: 例如。 相关课程如《》。 2. 对话式人工智能和聊天机器人: 单独课程《了解更多详情。 3. 深度学习背后的深层数学(Deep Mathematics): 推荐 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/ 上获取。 4. 人工智能的商业应用案例: 如《》(和欧洲工商管理学院 INSEAD 共同开发)。 5. 经典机器学习: 可参考《》。 6. 使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用: 如《》等。 此外,还可以: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定模块,如图像、音乐、视频等。 掌握提示词技巧。 4. 实践和尝试: 实践巩固知识,尝试使用各种产品创作作品。 在知识库分享实践成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-02-19
作为产品经理小白 我该如何学习成为一名合格的aipm
以下是为您提供的关于产品经理小白如何学习成为一名合格的 AI PM 的建议: 首先,了解一些重要的 AI 技术概念和框架: 1. 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬都强调要关注或直接阅读技术论文,像产品经理转型为 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,但仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门,值得观看。 此外,还可以观看一些关于技术框架与未来想象的访谈视频,比如安克创新 CEO 阳萌的访谈,其观点可能会给您带来启发。
2025-02-19
我想当一名ai产品经理 我该从哪学起
如果您想成为一名 AI 产品经理,可以从以下几个方面学起: 1. 掌握算法知识: 理解产品核心技术,了解基本的机器学习算法原理,有助于做出更合理的产品决策。 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿更好地规划产品未来。 提升产品竞争力,发现产品独特优势,提出创新特性。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。 2. 学习相关案例:可以参考一些成功的 AI 产品经理的经验,比如 Kelton 作为 AIPM 一枚,深耕 NLP 方向 2 年,从 0 1 打造过两款 AIGC 产品,还完成过 LLM 评测体系的搭建。 3. 了解技术原理与框架: 如思维链,谷歌在 2022 年论文提到其能显著提升大语言模型在复杂推理的能力。 了解 RAG(检索增强生成),将外部知识库切分成段落后转成向量存于向量数据库。 学习 PAL(程序辅助语言模型)和 ReAct 框架等。 同时,建议您关注或直接阅读技术论文,虽然有难度,但完成一定知识储备后,可借助 AI 辅助阅读。也可以通过一些通俗易懂的科普内容入门,比如相关的科普视频。
2025-02-19
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷特色: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方就是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷味儿的。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试对比。 使用方法:包括搜索 www.deepseek.com 点击“开始对话”、发送装有提示词的代码、阅读开场白后正式开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现多种功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-19
哪款AI好用
以下是为小白推荐的一些好用的 AI 产品: 1. Notion AI(免费可用):可在笔记和文档中应用 AI 的力量,让工作更迅速,写作更出色,思考更伟大。 2. Guidde AI(免费可用):是一款生成式 AI 平台,使团队能够以 11 倍的速度传递专业知识,与客户或员工共享。 3. Arc Max:用 AI 优化浏览体验,在任何网页寻求 AI 辅助,智能标签页&下载重命名,集成 ChatGPT 等功能。 4. Trickle(免费可用):用 AI 将截图转换成可搜索的珍贵资源,帮助总结和整理截图,提取洞察以便于搜索和查询。将视觉混乱的图片转化为智能档案,允许用户截取任何内容,并在以后轻松地检索和使用其内容。 需要注意的是,以上推荐带有强烈主观性,只给大家一些参考意见。说的有失偏颇也请大家原谅。同时,有些个人感觉不好用/不常用/没用过的产品就不在推荐范围内。
2025-02-19
关于deepseek的简介
DeepSeek(深度求索)是一家专注于人工智能基础技术研究的科技公司。 公司背景方面: 成立时间:2023 年 9 月。 总部:中国杭州。 定位:聚焦大模型研发与应用,致力于提供高效、安全、可控的 AI 技术解决方案。 关于其模型 DP 模型: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 此外,Deepseek 相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。
2025-02-19
AI对经济影响研究
AI 对经济的影响主要体现在以下几个方面: 1. AI 模型的智能水平大致等于用于训练和运行它的资源的对数,这些资源主要包括训练计算量、数据和推理计算量。只要投入足够资金,就能获得连续且可预测的收益,这一扩展定律在多个数量级上都相当准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,价格下降导致使用量大幅增加。例如从 2023 年初的 GPT4 到 2024 年中期的 GPT4o,每个令牌的价格在该时间段内下降了约 150 倍。 3. 社会经济上线性提升智力的价值具有超指数性质,因此看不出在不久的将来会停止对 AI 进行指数级投入的理由。 此外,如果上述观察继续成立,对社会的影响将是重大的。现在已经开始推出人工智能代理,它们最终将感觉像虚拟同事。以软件工程师代理为例,它最终能够完成大部分一名顶尖公司、工作几年的软件工程师在两三天内可以做的任务,但需要大量人类的监督和引导,且在某些方面表现出色,某些方面糟糕。想象拥有大量这样的虚拟同事存在于每一个知识工作领域。从某种程度上来说,AI 在经济上可能会像晶体管一样,是一项重大的科学发现,能很好地实现规模效应,并渗透到经济的几乎各个角落。 需要注意的是,世界不会一夜之间改变,短期内生活的大部分会与往常相同,2025 年人们的生活方式与 2024 年不会有太大差别。人们依然会相爱,组建家庭,在网上吵架,去大自然中远足等等。
2025-02-19