「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
要怎么实现agi
要实现 AGI(通用人工智能)是一个复杂且长期的目标,以下是一些相关的要点和信息: 弱人工智能与强人工智能的区别:弱人工智能是针对特定任务或范围较小的任务设计和训练的,只擅长执行提前定义好的任务,缺乏真正的理解和意识,例如 Siri 等虚拟助手、推荐算法和特定客服任务的对话机器人。强人工智能则具有人类水平的智能和理解能力,能完成任何人类可以完成的智力任务,适用于不同领域,同时拥有某种形式的意识或自我意识,但目前还只是一个理论概念,尚未有实际的 AI 系统达到。 Sora 成为实现 AGI 重要里程碑的理由:Sora 具备理解和模拟现实世界的独特能力,体现在复杂环境理解、跨领域学习与适应、抽象思维与创造力、动态环境交互等方面。其发展和完善将推动人工智能从专用 AI 向通用人工智能转变。 OpenAI 通用人工智能(AGI)的计划:OpenAI 原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型如 GPT2 实际上没有真正连贯回应的能力。 更多信息请见(AGI)。
2024-12-28
优秀的来源大模型有哪些
以下是一些优秀的大模型: Google 的 T5:属于 encoderdecoder 类型的模型,适用于翻译和摘要等任务。 OpenAI 的 GPT3:预训练数据量大,参数众多,能根据用户输入的任务描述或示例完成任务。 ChatGPT:用户通过像和人类对话的方式即可完成任务。 国内的优秀大模型有: 智谱清言(清华&智谱 AI):基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三,更擅长专业能力,但代码能力有优化空间,知识百科稍显不足。可应用于 AI 智能体、较复杂推理、广告文案、文学写作等场景。 通义千问 2.0(阿里云):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡。聚焦在移动设备端的应用,涵盖知识、记忆、工具、创作等方向,支持多种工具和文生文、文生图等场景。 Baichuan213BChat(百川智能):百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-28
国内外最好的来源大模型有哪些 对比介绍一下
以下是国内外一些较好的大模型及其对比介绍: 国外大模型: GPT4 Turbo 总分 90.63 分遥遥领先,在各项能力上表现出色。 国内大模型: 文心一言 4.0(API)总分 79.02 分,过去 1 年有长足进步。 通义千问 2.0(阿里云):在代码、上下文对话基础能力上排名国内第一,各项能力较为均衡,位于国内大模型第一梯队,适合应用于金融、医疗、汽车等垂直专业场景及代码生成与纠错等场景。 AndesGPT(OPPO):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。 百川智能的 Baichuan213BChat:是中文开源模型的主导力量,在中文上表现优于国外开源模型。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,但国内外的平均水平差距在缩小。另外,国内开源模型在中文上表现要好于国外开源模型。
2024-12-28
python
以下是关于 Python 安装相关 AI 编程助手的信息: 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,改变了很多人的工作方式,编程领域也不例外,AI 作为编程助手能提供实时建议和解决方案,提升工作效率。 配置 AI 插件前需先安装 Python 运行环境,可参考: 安装步骤:点击左上角的 File Settings Plugins Marketplace。 注册(免费):安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 智能补全:按下 Tab 键接受所有补全建议,按下 Ctrl + →键接收单个词补全建议。 AI 问答:通过点击左上角工具栏中的 Fitten Code 开始新对话打开对话窗口进行对话。 自动生成代码:Fitten Code 工具栏中选择“Fitten Code 生成代码”,然后在输入框中输入指令即可生成代码。 代码转换:Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择“Fitten Code 编辑代码”,然后在输入框中输入需求即可完成转换。 自动生成注释:Fitten Code 能够根据代码自动生成相关注释,通过分析代码逻辑和结构,为代码提供清晰易懂的解释和文档。 安装灵码 AI 编程助手: 同样在 AI 快速发展的背景下,其能为编程带来诸多便利。 配置插件前也需先安装 Python 运行环境,可参考: 安装步骤:点击左上角的 File Settings Plugins Marketplace。 登录(限免):安装完成插件会提示登录,按要求注册登录即可。 使用上和 Fitten 差不多。 安装 FaceFusion 时的 Python 环境配置: FaceFusion 是开源的换脸工具,安装较繁琐。 其所需环境包括 Python(需是 3.10 版本,不能高于 3.7 到 3.10,因为 onnxruntime==1.16.3 需要 Python 版本在 3.7 到 3.10 之间,不然会导致 Python 环境不兼容要求的 onnxruntime 版本)、PIP、GIT、FFmpeg、Microsoft Visual C++ 2015 可再发行组件包、微软 Visual Studio 2022 构建工具。 安装 Python 时,推荐使用安装包下载安装:python 下载地址 https://www.python.org/downloads/ 。下载对应的版本后,点击安装,注意把它添加到系统的环境变量中。也可以使用命令行的安装方式。安装 FFmpeg 后需重新启动系统以使 FFmpeg 正常运行。安装微软 Visual Studio 2022 构建工具时,在安装过程中,请确保选择桌面开发与 C++包。
2024-12-27
openai
以下是关于 OpenAI 的相关信息: AGI 的 5 个等级: 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品执行任务后仍需人类参与,尚未达到完全智能体水平。 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 模型: GPT4(Beta):一组改进 GPT3.5 的模型,可理解和生成自然语言或代码。 GPT3.5:一组改进 GPT3 的模型,可理解并生成自然语言或代码。 DALL·E(Beta):可以在给定自然语言提示的情况下生成和编辑图像的模型。 Whisper(Beta):可以将音频转换为文本的模型。 Embeddings:一组可以将文本转换为数字形式的模型。 Codex(Limited Beta):一组可以理解和生成代码的模型,包括将自然语言转换为代码。 Moderation:可以检测文本是否敏感或不安全的微调模型。 GPT3:一组可以理解和生成自然语言的模型。 GPT、DALL·E、Sora 相关:Sora 的出现证明了 OpenAI 试图让计算机模拟真实物理世界的野心及对自身技术路线的坚持。从 OpenAI 发布的 Sora 的技术报告中可看到对过往大语言模型训练成功经验的复用。加州大学伯克利分校计算机科学 PHD、知乎作者 SIY.Z 从技术实现上分析了 Sora 成功的部分原因,以及从商业和技术趋势上分析了 OpenAI 能跑通全部技术栈的原因,并尝试预测了 OpenAI 下一步的进展。
2024-12-27
ai自动总结视频
以下是关于 AI 自动总结视频的相关内容: 目前大部分用 AI 总结视频的工具/插件/应用是通过提取视频字幕来实现的。对于有字幕的 B 站视频,若视频栏下面有字幕按钮,说明视频作者已上传字幕或后台适配了 AI 字幕。可以安装油猴脚本,安装后刷新浏览器,点击字幕会出现“下载”按钮,可选择多种字幕格式,然后将字幕文字内容全选复制发送给 GPTs 进行总结。 此外,如果想用 AI 把小说做成视频,大致的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。内容由 AI 大模型生成,请仔细甄别。
2024-12-27
如何训练AI
训练 AI 通常包括以下步骤: 1. 收集海量数据:如同教导孩子成为博学多才之人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:在孩子学习前要整理资料确保适合其年龄和学习能力,AI 研究人员也需清理和组织收集的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是复杂的神经网络,如 Transformer 架构,其擅长处理序列数据(如文本)。 4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的所有数据,这个过程称为“训练”。例如,模型会反复阅读数据,尝试预测句子中的下一个词,通过不断重复逐渐学会理解和生成人类语言。 此外,为了在医疗保健领域让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和正规学校教育开始,再通过学徒实践从出色实践者那里学习,获取复杂情况下确定最佳答案的直觉。对于 AI,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和期望一个生成模型解决所有问题。比如先训练生物学模型,再添加特定于医疗保健或药物设计的数据点。 训练 AI 还需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。
2024-12-27
关于使用原理 AI的论文
以下是关于 AI 原理的相关内容: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据无标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-27
去水印怎么去除
以下为您介绍一些 AI 去水印的工具: 1. AVAide Watermark Remover:这是一个在线工具,运用 AI 技术去除图片水印。它支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简便,上传图片后选择水印区域,保存并下载处理后的图片即可。还提供去除文本、对象、人物、日期和贴纸等功能。 2. Vmake:提供 AI 去除图片水印功能,用户可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可保存生成的文件,适合需在社交媒体分享图片的用户快速去水印。 3. AI 改图神器:具备 AI 智能图片修复去水印功能,可一键去除图片中的多余物体、人物或水印且不留痕迹。支持直接粘贴图像或上传手机图像,操作简单。 此外,还有以下推荐: 1. 水印去除神器:测试表现出色,多厚的水印都能轻松去除,去水印效果极为干净。在线体验: 这些工具各有特点,您可根据具体需求选择最适合的去水印工具。内容由 AI 大模型生成,请仔细甄别。
2024-12-27
如何学习使用ai
以下是关于如何学习使用 AI 的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并有可能获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词的技巧,它容易上手且很有用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,知识库中也提供了很多大家实践后的作品和文章分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的有效方式。例如尝试使用 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,从而获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、用 AI 学习外语 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 七、用 AI 进行英语和数学学习 英语学习: 1. 智能辅助工具:利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 2. 语音识别和发音练习:使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用自适应学习平台(如 Duolingo)利用 AI 技术量身定制学习计划,提供个性化学习内容和练习。 4. 智能导师和对话机器人:利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用自适应学习系统(如 Khan Academy)结合 AI 技术提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:利用智能题库和作业辅助工具(如 Photomath)通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手:使用虚拟教学助手(如 Socratic)利用 AI 技术解答数学问题、提供教学视频和答疑服务,帮助理解和掌握数学知识。 4. 交互式学习平台:参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-27