Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在扣子中 会话、消息、对话的区别是什么

Answer

在扣子中,会话、消息、对话的区别如下:

  • 会话:是指一系列的交流过程,包括用户与扣子之间的交互。会话可以包含多个消息和对话。
  • 消息:是会话中的基本单位,是用户或扣子发送的具体信息。消息可以是文本、图片、链接等形式。
  • 对话:是会话中的一个特定部分,通常是指用户与扣子之间的连续交流。对话可以包含多个消息,并且具有一定的主题或目的。

例如,在一个聊天场景中,用户发送了一条消息询问扣子某个问题,扣子回复了一条消息,这就构成了一个对话。而整个聊天过程就是一个会话,其中包含了多个这样的对话。

需要注意的是,这些术语的具体含义可能会因上下文和使用场景而有所不同。在扣子中,它们的具体用法和区别可能会根据平台的设计和功能而有所差异。

Content generated by AI large model, please carefully verify (powered by aily)

References

会话补全(Chat completions)

聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由text-davinci-003等指令遵循模型提供的任务)。下面是一个API调用的例子:messages参数是主要的输入。messages必须是一哥的消息对象(message object)数组,每个对象拥有一个role(“system”,“user”,或“assistant”)和content(消息的内容)。会话可以少至1条消息或者是有许多条。通常,会话首先使用系统消息(“system”)格式化,然后交替使用用户消息(“user”)和助手消息(“assistant”)。系统消息有助于设定助手的行为。在上面的例子中,助手被说明为“你是一个能干的助手”。用户消息帮助指示助手。它们可以由应用的用户生成,也可以由开发者设置为指令。助手消息用于存储之前的响应。它们也可以是由开发者编写用于获取期望响应的示例。

问:Coze (扣子)是什么?

Coze是由字节跳动推出的AI聊天机器人和应用程序编辑开发平台,专为开发下一代AI聊天机器人而设计。它旨在简化AI机器人的开发过程,使得无论是开发者还是非技术用户,都能够快速搭建基于AI模型的各类问答Bot,处理从简单问答到复杂逻辑对话的任务。Coze平台的主要特点包括:1.多语言模型支持:Coze使用了大型语言模型,如GPT-4-8K和GPT-4-128K,并提供了云雀语言模型等,以支持不同场景下的对话和交互。2.插件系统:平台集成了超过60款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,以扩展Bot的能力。3.知识库功能:Coze允许用户上传和管理数据,支持Bot与用户数据交互,可以上传TXT、PDF、DOCX、Excel、CSV格式的文档,或基于URL获取在线内容和API JSON数据。4.数据库和记忆能力:Coze提供了数据库功能,允许Bot访问会话内存和上下文,持久记住用户对话中的重要参数或内容。5.工作流设计:用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,Coze提供了大量灵活可组合的节点,如大型语言模型(LLM)、自定义代码、判断逻辑等。

洛水: 消息卡片,让 Coze 对话飞起来:一键掌握创建技巧

专业词汇解释Bot:即“机器人”,在Coze平台上,Bot是自动化的程序,可以执行特定的任务,比如自动回复用户的消息。消息卡片:这是一种在Coze平台上用来展示信息的方式,可以包含文字、图片和按钮等元素,以视觉化的形式向用户展示信息。AI生成卡片:利用人工智能技术自动创建的卡片,可以根据用户的需求快速生成信息卡片。模板:预设的卡片样式,用户可以直接使用或根据需要进行修改。组件:在消息卡片中,组件分布局组件和基础组件,是指构成卡片界面的各个部分,比如文本框、图片框、按钮等。变量:在卡片中用来存储数据的占位符,可以根据实际需要赋予不同的值。布局:卡片上各个组件的排列和组织方式。循环渲染:一种技术,允许卡片中的某些部分根据数据列表重复显示多次。显隐设置:根据条件控制卡片上某些部分的显示或隐藏。发布:将创建好的卡片发布出去,使其可以被插件或工作流使用。

Others are asking
你帮我找找能够生成提示词的提示词,不要是那个ai会话的,是文本生成的
以下是一些关于生成文本生成提示词的相关信息: OpenAI API 可应用于多种自然语言、代码或图像生成任务,提供不同能力级别的模型,可微调自定义模型,模型通过将文本分解为标记(Token)来理解和处理文本。 设计提示词本质上是对模型进行“编程”,可通过提供指令或示例完成,适用于内容或代码生成、摘要、扩展、对话、创意写作、风格转换等任务。 在 OpenAI Playground 中,有可选的模型、提示词结构、温度等参数。提示词结构区分了 SYSTEM 和 USER 对话框,SYSTEM 可用于控制角色设定。温度控制生成文本的随机性,取值 0 到 2 之间,0 时结果确定无聊,过高则可能输出乱码。 关于生成提示词的工具,推荐顺序为 chatGPT 4.0、kimichat、智谱清言 4 等。对于文本纠错,可使用飞书文档自带纠错功能或通过 prompt 让大模型检查并改正。对于国产大模型,智谱和文心等可以文生图。
2025-03-13
扣子的智能体如何在飞书中创建一个可以和用户会话的账号
要在飞书中创建一个可以和用户会话的扣子智能体账号,您可以按照以下步骤进行操作: 1. 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 给令牌起一个名字。 为了方便选择永久有效。 选择制定团队空间,可以是个人空间、也可以选择团队空间。 勾选所有权限。 保存好令牌的 Token,切勿向他人泄露。 2. 获取机器人 ID: 在个人空间中找到自己要接入到微信中的机器人,比如画小二智能小助手。 点击对应的机器人进入机器人编辑界面。 在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 3. API 授权: 点击右上角发布。 会发现多了一个 Bot as API,勾选 Bot as API。 确定应用已经成功授权 Bot as API。 4. 服务器设置: chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业 AI 应用。 点击“Docker”中的“编排模板”中的“添加”按钮。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”。 选择在“编排模板”里创建的“coze2openai”。 提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 5. 绑定微信: 需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制。 点击容器,可以看到运行的是两个服务。 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 手动刷新界面验证是否成功,点击“刷新日志”,看到 WeChat login success 提示微信登录成功。 为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试: 把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。您可以参考个人微信对话和微信群对话效果演示视频:
2024-11-19
如何用ai练习日语会话
以下是用 AI 练习日语会话的方法: 1. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择日语,按课程指引学习。 Babbel:结合 AI 技术,提供个性化课程和练习,重点是实际交流所需技能。注册账户,选择日语课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析进度,提供适合练习和反馈。注册并选择日语,使用多种练习模式(听力、口语、阅读和写作)学习。 2. AI 对话助手: ChatGPT:可模拟对话练习,提高语言交流能力。在聊天界面选择日语,与 AI 对话,询问语法、词汇等问题,模拟实际交流场景。 Google Assistant:支持多种语言,包括日语,可进行日常对话练习和词汇学习。设置为日语,通过语音或文本输入互动。 此外,还有一些学习方法建议: 1. 设定目标:明确学习目标和时间表,分阶段完成任务。 2. 多样化练习:结合听、说、读、写多种方式全面提升语言技能。 3. 模拟真实环境:尽量多与日语母语者交流,或用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 坚持使用这些 AI 工具和方法,并结合实际交流,不断进步。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-17
多轮会话
多轮会话是指在一个对话中进行多次交互的过程。这种对话形式通常在聊天机器人、客服机器人等场景中使用。在多轮会话中,用户可以在一个对话中提出多个问题或请求,机器人会根据用户的输入进行相应的回答或操作。 多轮会话的实现需要依赖于自然语言处理技术和对话管理机制。在自然语言处理方面,需要对用户输入的文本进行理解和分析,包括词法分析、句法分析、语义理解等。在对话管理方面,需要对对话过程进行跟踪和管理,包括对话状态的维护、对话历史的记录、对话策略的制定等。 为了实现多轮会话,通常需要使用到一些对话管理机制,例如对话状态跟踪、对话历史记录、对话策略制定等。这些机制可以帮助机器人更好地理解用户的意图和需求,从而提供更加准确和有效的回答和操作。 此外,多轮会话还需要考虑到一些其他的因素,例如对话的轮次限制、对话的时长限制、对话的中断和恢复等。这些因素需要在对话管理机制中进行考虑和处理,以确保对话的顺利进行和用户体验的良好。 总的来说,多轮会话是一种自然、灵活的对话形式,可以为用户提供更加便捷和高效的服务。
2024-06-11
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
扣子AI在中小学数学教学中可以怎么结合使用
扣子 AI 在中小学数学教学中的结合使用可以参考以下方面: 1. 自适应学习系统:例如使用像 Khan Academy 这样的平台,结合 AI 技术为学生提供个性化的数学学习路径和练习题,根据学生的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用像 Photomath 这样的工具,通过图像识别和数学推理技术为学生提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的应用,借助 AI 技术为学生解答数学问题、提供教学视频和答疑服务,帮助学生理解和掌握数学知识。 4. 交互式学习平台:参与像 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 此外,为小学数学课设计教育游戏时,可以考虑以下几个方面: 1. 游戏机制:选择适合小学生的游戏机制,如跳跃、追逐、搜寻等,增加游戏趣味性和参与度。 2. 游戏元素:选择数学相关的元素,如数字、运算符号、图形等,将它们融入游戏中,使学生通过游戏了解或巩固相应的数学知识。
2025-04-01
扣子设置了微信客服机器人,如何实现机器人按时自动向微信群发布图片或文档等信息。
要实现微信客服机器人按时自动向微信群发布图片或文档等信息,您可以按照以下步骤进行操作: 前提条件: 1. 已开通了。 2. 已搭建了 Bot。 步骤一:获取微信客服配置信息 1. 登录平台。 2. 单击企业信息,然后复制企业 ID。 3. 单击开发配置,然后再单击开始使用。 4. 单击随机获取按钮分别生成并保存 Token 和 EncodingAESKey。复制 Token 和 EncodingAESKey 后,先不要关闭该页面。 步骤二:在扣子中配置微信客服信息 1. 在 Bots 页面,选择需要发布的 Bot。 2. 在 Bot 编排页面,单击发布。 3. 找到微信客服渠道,然后单击配置。 4. 输入步骤一中复制的企业 ID,然后单击下一步。 5. 输入步骤一中复制的 Token 和 EncodingAESKey,然后单击下一步。 6. 复制 webhook 地址。复制 webhook 地址后,先不要关闭该配置窗口。 步骤三:配置回调地址 1. 回到步骤一中的开始企业接入页面,输入上一步中复制的 webhook 地址。单击完成。确保粘贴回调地址时没有引入空格,空格会导致校验失败。 2. 在开发配置页面,复制 secret。 3. 单击客服账号,复制账号。 步骤四:发布 Bot 1. 回到扣子平台的微信客服渠道配置页面,输入复制的 secret 和客服名称。 2. 单击保存。 3. 在发布记录中输入发布信息,然后勾选微信客服渠道,再单击发布。 4. 发布完成后,单击立即对话登录微信客服,体验 Bot 效果。 常见问题: 1. 收不到机器人回复消息怎么办? 可尝试通过以下方法解决: 查看微信客服的启用状态:登录,在应用管理页面,点击微信客服。确保没有启用微信客服功能。如果已经开启了微信客服功能,需要关闭。关闭后,该应用在工作台入口将被隐藏,员工不可使用。请谨慎评估。 检查近期是否有登录企业微信应用。确保企业至少有一个成员通过手机号验证/微信授权登录过企业微信应用。 如果还是有问题,可以发送邮件至 feedback@coze.cn 反馈。
2025-03-30
用扣子的时候怎么让大模型严格按照知识库内容进行输出
以下是关于让大模型严格按照知识库内容进行输出的相关信息: 扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法。在智能体中使用知识库,收集相关内容,当智能体回答用户时会先检索知识库,使回复更准确。 在“掘金 x 扣子 Hackathon 活动 深圳站”的总冠军工作流中,对于用户向小说人物角色的提问,通过一系列节点,包括开始节点接收问题、知识库节点检索、大模型节点生成答案等,本质上是一个根据用户 query 进行检索增强生成(RAG)的任务,每个工作流中都嵌入了知识库节点,维护了如小说合集等知识库。 大模型节点是调用大语言模型,使用变量和提示词生成回复。按需选择基础版或专业版模型,基础版支持扣子预设的一批模型资源,专业版除默认添加的豆包模型外,还支持按需接入火山引擎方舟平台的模型资源。模型选择右下角生成多样性可从多个维度调整不同模型在生成内容时的随机性,有精确模式、平衡模式和创意模式等预置模式。输入方面,开启智能体对话历史后,上下文信息将自动携带进入大模型,参数名可随意设置但建议有规律,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-26
扣子api的调用流程
扣子 API 的调用流程如下: 1. 传递请求的相关部分: Body:用于传递请求的主体部分,可以是 JSON、XML 或其他类型的数据。在 GET 方法中通常不用于传递参数,因为 GET 方法的 URL 已包含必要参数。 Path:用于定义请求的路径部分,通常以“/”开头,后面跟着一系列段落。在 GET 方法中可传递参数,但常编码为 URL 一部分。 Query:用于定义请求的查询部分,通常以“?”开头,后跟一系列键值对。在 GET 方法中是常用的参数传递方式。 Header:用于定义 HTTP 请求的头信息部分,包括各种头部字段。在 GET 方法中通常不用于传递参数,而是定义请求头部信息。 2. 配置输出参数: 如果填写无误,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 例如填入汉字“张”,点击自动解析。解析成功会显示成功,输出参数填好后点击保存并继续。参数描述可根据需求填写。 3. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,创建扣子的令牌步骤如下: 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌起名,选择过期时间(如永久有效),选择指定团队空间(个人空间或团队空间),勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 让 Coze 智能体机器人连上微信和微信群的配置: 1. 获取机器人 ID:在个人空间中找到要接入微信的机器人,如画小二智能小助手,点击进入编辑界面,浏览器地址栏 bot/之后的数据即为机器人的 Bot ID。 2. API 授权:点击右上角发布,会出现 Bot as API,勾选并确定应用已成功授权 Bot as API。
2025-03-25
扣子工作流与用户界面搭建
以下是关于扣子工作流与用户界面搭建的相关内容: 一、工作流搭建 1. 进入扣子(coze.cn),选中「创建应用」,再选中「创建空白应用」,输入「应用名称」进入项目搭建页面。 2. 新增一个工作流,工作流名称叫做 psy_ai。 3. 该项目的业务逻辑是通过上传儿童的绘画作品分析心理状态,分析过程分为多个步骤实现,工作流的编排流程图为:上传作品>多个多模态大模型识别不同元素>分别提取特种并分析>综合分析结果>给出评估与建议。 4. 工作流从左到右分为三组大模型: 第一组多模态大模型主要作用是分析图片元素:整体特征、房屋特征、树木特征、人物特征。 第二组通用大模型主要是对提取到的信息进行对应内容的总结分析。 第三组通用大模型先汇总结果,然后再分别提取不同(诊断评估与建议)的结果。 5. 所有大模型节点对应的 prompt(提示词):文档地址:https://vcn5grhrq8y0.feishu.cn/wiki/Z3NzwrtEKi9h5mk0rTOcAT0xnTc 二、用户界面搭建 1. 选择「桌面网页」类型。 2. 以《小喵星座日历》扣子网页应用为例: 板块 1:输入个人信息和生成图片,包含 2 个选项、1 个按钮、分割图、1 个输入框、1 个按钮。点击生成按钮会触发事件,调用日历生成工作流,生成中时生成按钮禁用,用 loading 按钮展示动态变化。 板块 2:生成星座日历图片,新建一个容器,包含一个文本组件、一个列表组件。 板块 3:查看星座生成记录,新建一个容器,包含一个按钮组件、一个列表组件,点击按钮调用读取生成历史的工作流,列表绑定生成历史工作流的输出结果。 板块 4:查看示例,新建一个容器,包含一个文本组件、4 个图片组件。 三、功能页相关配置 1. {{ImageUpload1.value}}用于获取图片上传组件的第一张图片。 2. {{psy_ai.error}}是工作流的报错信息。 3. 当用户上传图片点击按钮时会进入在家中的状态,右边内容显示容器里有两个组件: 图片组件显示加载中的 gif 图片(默认隐藏),图片来源本地上传加载中 gif 图,尺寸宽度为百分比 100%,高度适应内容,可见性根据{{!psy_ai.loading}}控制,工作流运行中显示。 Markdown 组件显示分析内容,隐藏根据{{psy_ai.loading}},工作流运行完显示。 至此,页面所有的布局和数据交互全部完成。
2025-03-25
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
工作流 和 智能体的区别?
工作流和智能体的区别主要体现在以下几个方面: 定义: 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 功能: 智能体是一个自动化的“助手”,用来执行特定任务,擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,就不知道怎么办了。 工作流是一系列任务的流程,决定了每个步骤应该做什么,可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节,更灵活,能够适应变化,可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。 范围: 智能体是特定任务的“助手”,用于局部执行任务。 工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。 在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。
2025-04-08
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30