Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI与计算机编程的关系

Answer

AI 与计算机编程有着密切的关系。

过去,捕获并利用计算可还原性的主要方法是开发正式的描述事物的方式,通常使用数学和数学公式。而人工智能提供了一种新的利用计算可简化性的途径。在训练神经网络中,能够捕捉某些规律从而做出预测。

当前的技术发展与操作系统的发展轨迹相似,如 Windows、OS X 和 Linux 与 GPT、PaLM、Claude 和 Llama/Mistral 的关系。大多数现有应用也能移植到新平台。

对于更有经验的程序员,关注点不仅在代码正确性,还有整体代码质量。如 OpenAI Codex 模型的最新版本编写冗长的平均水平代码,将其转化为理想且正确的代码可能比从头编写更慢。虽然生成性编程是开发人员生产力的重要步骤,但目前还不清楚这种改进是否显著不同于以往。生成式 AI 能让程序员更优秀,但仍需编程。

总之,AI 为编程带来了新的方式和可能性,但编程依然是重要且不可替代的。

Content generated by AI large model, please carefully verify (powered by aily)

References

沃尔夫勒姆:人工智能能解决科学问题吗?

So how does this relate to AI?Well,the whole story of things like trained neural nets that we’ve discussed here is a story of leveraging computational reducibility,and in particular computational reducibility that’s somehow aligned with what human minds also use.In the past the main way to capture—and capitalize on—computational reducibility was to develop formal ways to describe things,typically using mathematics and mathematical formulas.AI in effect provides a new way to make use of computational reducibility.Normally there’s no human-level narrative to how it works; it’s just that somehow within a trained neural net we manage to capture certain regularities that allow us,for example,to make certain predictions.那么这与人工智能有什么关系呢?好吧,我们在这里讨论的训练神经网络之类的事情的整个故事是一个利用计算可归约性的故事,特别是计算可归约性,它在某种程度上与人类思维所使用的东西是一致的。过去,捕获并利用计算可还原性的主要方法是开发描述事物的正式方法,通常使用数学和数学公式。人工智能实际上提供了一种利用计算可简化性的新方法。通常情况下,没有人性化的叙述来说明它是如何运作的。只是在经过训练的神经网络中,我们设法捕捉某些规律,从而使我们能够做出某些预测。

AI OS:LLMs更像是新操作系统的核心程序

有趣的是,我觉得当前的这种技术发展与操作系统的发展轨迹颇为相似,例如Windows、OS X和Linux与GPT、PaLM、Claude和Llama/Mistral的关系。与传统操作系统默认搭载的应用相似,大多数现有应用也可以移植到这些新平台上。总之,仅将LLMs视作聊天机器人,就如同我们曾将初代计算机仅视为计算器一般。现在,一个全新的计算时代正在到来,而这只是冰山一角。

艺术并未消亡,它只是由机器生成

对于更有经验的程序员来说,他们的关注点可能不仅限于代码的正确性,还包括整体代码质量。如[fast.ai](https://fast.ai/)的Jeremy Howard[所解释的](https://future.com/the-rise-of-domain-experts-in-deep-learning/),关于OpenAI Codex模型的最新版本,“[它]编写冗长的代码,因为它生成的是平均水平的代码。对我来说,将平均水平的代码转化为我喜欢且知道是正确的代码,比从头开始编写它(至少在我熟悉的语言中)要慢得多。”因此,虽然显然生成性编程是开发人员生产力的一个重要步骤,但目前还不清楚这种改进是否显著地不同于我们以前所看到的。生成式AI使程序员更优秀,但他们仍然必须编程。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
如何使用cursor进行编程
以下是关于如何使用 Cursor 进行编程的相关信息: Cursor 旨在让您极其高效,是使用 AI 进行编码的最佳方式。您可以从代码库中获得最佳答案,参考特定文件或文档,一键使用模型中的代码。 它允许您使用指令编写代码,通过简单的提示就能更新整个类或函数。 Cursor 能通过预测您的下一个编辑,让您轻松完成更改。
2025-04-18
作为一个小白,如何开始ai编程
以下是小白开始 AI 编程的步骤和相关建议: 直接上手: AI 编程就像一场 PUA 和提问大赛。 要分辨 Chat 和 Composer 两个模式。Chat 模式可与大模型对话,但常用的是 Composer 模式,它能即时反馈,直接创建文件、填写代码并询问您是否满意。 例如,在 Composer 模式下输入“给我创建一个 2048 的网页游戏吧”,1 2 分钟后会生成相关文件。 生成文件后,可打开文件夹找到 index.html 双击查看本地运行效果。若环境报错双击打不开,可截图在 Composer 对话框询问解决方法。 思想准备: 对于小白来说,因为无知会充满勇气和忧虑。能从心理上面对“我或许能行”这件事,可能就解决了 AI 编程问题的一半。 后续探索: 作者将继续探索并更新相关文章,包括: 第一弹,一点小小的震撼——cursor 黑客松。 第二弹,文案工作者的福音——cursor 批量写 prompt、写文章。 第三弹,上一辈的崛起——cursor 的“向上”,给爹妈一场安利。 如果想要交流或了解更多,欢迎戳这里:
2025-04-14
如何快速上手Cursor、Windsurf、V0.dev、bolt.new、Devin等AI编程产品的经验,能快速转型为AI产品经理?
以下是关于快速上手 Cursor、Windsurf、V0.dev、bolt.new、Devin 等 AI 编程产品并转型为 AI 产品经理的一些经验: 1. 深入理解用户场景和 AI 能力边界:要构建差异化的 AI Native 体验,需要同时对 AI 能力边界和用户场景有深入洞察。 2. 持续迭代产品:在快速变化的模型能力下,避免在每次的基座模型迭代中掉队或被淘汰。 3. 构建良好的模型产品化能力和基础设施:使得应用可以持续收集用户数据以迭代模型。 对于具体的产品: Cursor: 允许用自然语言描述需求,对上下文有深度理解能力,能理解整个项目的结构和依赖关系,进行跨文件的语义分析。 提供智能的代码重构建议,自动诊断和修复常见错误,基于代码自动生成文档。 但要注意,即使有 AI 辅助,当好产品经理也不容易,需要反复沟通和调整。 Devin:作为 2024 年横空出世的产品,预示着软件开发范式的根本转变。 Windsurf、V0.dev、bolt.new 等: 可以使用如 Cursor Composer 构建产品、使用 Bolt.new 构建产品、使用 V0.dev 生成组件等。 此外,国内知名的 AI 全栈开发者 @idoubi 分享了相关使用经验,包括自动补全代码、Debug&&Fix Error、实时对话&&联网搜索、写提示词、写前端页面、截图生成组件、写常用的代码逻辑/函数、代码重构、多语言翻译等方面。同时,对于零代码基础的人员,也有使用相关工具实现想法的方法,如使用 Cursor Composer、Bolt.new、Claude 等构建不同类型的应用。还可以盘点常用的 AI 辅助编程工具和使用场景,如 AI 编辑器(Cursor、Windsurf、Pear Al 等)、编辑器 AI 扩展(Github Copilot、Continue、Cline 等)、UI 组件生成工具(Cursor、V0.dev、Claude、screenshottocode 等)、完整项目构建工具(Cursor、Bolt.new、Replit Agent、Wordware 等)。
2025-04-10
AI编程蓝皮书
以下是关于“AI 编程蓝皮书”的相关内容: 字节发布全新 AI IDE:Trae,免费使用 Claude,发布 3 天阅读量超 3 万。Trae 原生中文支持,无需安装中文插件,语言设置为中文后操作细节清晰明了,还有匠心设计的交互体验,比如直接叫审查,不用琢磨 Diff。 2 月 18 日晚 8:00 有关于 Trae 的直播,飞书会议地址为 https://vc.feishu.cn/j/254331715,邀请了多位重磅嘉宾。 有人受小红书金句格言卡片启发,思考能否通过简单操作实现卡片制作工具。看了黄叔的《AI 编程蓝皮书》和直播课,明白目前编程可用自然语言交互实现,降低了门槛,清晰向 AI 说明需求很重要,以及了解了调用 API 是怎么回事。相关文档:
2025-04-09
COE团队需要什么AI能力,比如AI辅助编程;AI部署+和调优;AI智能体;AI提示词; OCR识别
COE 团队可能需要以下 AI 能力: 1. AI 辅助编程:虽然 AI CODING 目前适用于小场景和产品的第一个版本,但在复杂应用中可能存在需求理解错误导致产品出错的情况。 2. AI 部署和调优:涵盖服务器创建、搭建微信机器人到引入 coze API 的全过程,包括 Docker 部署、本地运行、RailWay 部署等多种方式。 3. AI 智能体:从最初只有对话框的 chatbot 到有更多交互方式,低代码或零代码的工作流等场景做得较好。例如以证件照为例,实现了相关智能体和交互。创建智能体工作流包括创建、编辑人设、编排设计等步骤。 4. AI 提示词:在编写系统提示词时需要用{{input}}作为参数引入,以使大模型知道需要生成与输入相关的结果。 5. OCR 识别:未提及相关具体内容。 同时,在图像能力方面,支持图片生成、图片识别、图生图等,可选择 Dal3、stable diffusion、replicate、midjourney、CogView3、vision 模型。具有丰富插件,支持个性化插件扩展,已实现多角色切换、文字险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件。通过上传知识库文件可自定义专属机器人,作为数字分身、智能客服、私域助手使用,基于 LinkAI 实现。
2025-04-09
学编程
以下是关于学习编程的一些建议和经验: 1. 借助 AI 学习编程的关键: 从“Hello World”起点开始,验证环境、建立信心、理解基本概念,打通“理解→实践→问题解决→加深理解”的学习循环。 使用流行语言和框架(如 React、Next.js、TailwindCSS)。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题三步走:复现、精确描述、回滚。AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。 原文: 2. o1 pro 重构代码的体验: 适用于单个或少数几个文件的代码重构,提示词简单直接。 效果:重构质量可靠,极少出错,若有问题重新生成一般即可解决。 实践方法:一边重构一边添加新功能,完成后手动 Review 和测试,有条件的话让 AI 顺便生成测试代码更佳。 原文: 3. 教孩子学编程的经验分享: 方法总结: 找需求:选择一个实用的小项目,例如浏览器插件,激发学习兴趣。 与 AI 结对编程:先学习基础知识(如 Chrome Dev Tool 查找 API),然后借助 AI 完成第一版代码,快速构建可用版本。 解释代码:通过讲解代码工作原理加深理解,遇到不清楚的地方让 AI 辅助解释,反复学习并修改代码观察效果。 迭代功能:在基础版本上不断增加新功能(如显示图片、本地存储等),通过迭代完善程序,同时在实践中学习。 关键理念: 通过实际项目激发兴趣,学以致用。 采用费曼学习法:讲解代码工作原理,教会别人才能真正掌握。 借助 AI 辅助编程,解决问题与学习编程技能同步进行。 原文: 4. 用 GPT4 构建的 AI 编程 Master 测试: 例如,当表示想用 Rust 开发一个程序时,AI 编程 Master 会进一步询问关于程序的类型、具体项目想法以及编程经验等细节,以更好地提供帮助。 GPTs:
2025-04-01
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
计算机视觉
计算机视觉是机器认知世界的基础,人类获取的信息约 83%来自视觉,而计算机视觉旨在让计算机看懂图像或视频里的内容,像人一样通过视觉观察和理解世界。 其三大基础任务包括分类、检测和分割: 图像分类:根据图像中的语义信息对不同类别的图像进行区分。 目标检测:找出图像或视频中的目标物体,同时检测出物体的位置和大小。 图像分割:又可划分为语义分割和实例分割。语义分割不区分同类目标,实例分割则需要区分同类目标中的不同个体。 此外,计算机视觉还包括目标跟踪,对图像序列中的运动目标进行检测、提取、识别和跟踪,实现对运动目标的行为理解。 参考资料: 在企业应用中,计算机视觉的应用包括: 图像分类和物体识别,将图片作为输入,输出图像的内容分类,应用于面部识别。 物体识别,不仅分类或识别物体,还检测物体是否出现在图像里。 图像分割算法,识别物体位置并标记不同物体对应的像素点,如用于识别 X 光照射图片。 视觉追踪,检测视频中的奔跑者并追踪其轨迹和运动方向。
2025-03-19
我是一名中职思政教师,我想开一个主题为AI赋能梦想的班会,班会内容要创新并且与计算机专业高一学生、技能强国相结合。想帮我想一个班会框架,内容具有在教室的可操作性,低成本的
以下是为您设计的一个以“AI 赋能梦想”为主题,适合中职计算机专业高一学生,在教室可操作且低成本的班会框架: 一、引入主题 1. 播放一段关于 AI 改变世界的短视频,引发学生兴趣。 2. 老师简单介绍本次班会的主题“AI 赋能梦想”以及与技能强国的联系。 二、知识讲解 1. 用 PPT 展示 AI 的基本概念和应用领域,如医疗、交通、教育等。 2. 结合计算机专业,讲解 AI 在该领域的发展前景和就业机会。 三、小组讨论 1. 分组讨论 AI 对未来职业的影响,以及如何通过学习计算机技能在 AI 时代立足。 2. 每组选派代表发言,分享讨论结果。 四、案例展示 1. 展示一些中职学生在 AI 相关领域取得成功的案例。 2. 分析他们成功的原因和所具备的技能。 五、创意设想 1. 让学生们设想自己如何利用 AI 技术实现个人梦想,写在纸条上。 2. 随机抽取学生分享他们的设想。 六、总结与展望 1. 老师总结本次班会的重点内容。 2. 鼓励学生努力学习,为技能强国贡献自己的力量,实现 AI 赋能的梦想。 希望这个班会框架能满足您的需求,祝您班会举办成功!
2025-03-13
AI产品经理应该具备哪些技能,需要学习哪些工具?计算机科学与技术专业的研究生如果想找AI产品经理的实习应该如何着手准备呢?如何准备项目呢?
AI 产品经理应具备的技能和需要学习的工具包括: 1. 学历背景:本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具熟悉:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;具有一定的编程基础,熟练使用 Python、Git 等工具。 3. 项目能力:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 4. 思维能力:对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 计算机科学与技术专业的研究生如果想找 AI 产品经理的实习,可以从以下方面着手准备: 1. 了解行业需求:搜索了解目前 AI 产品经理岗位的招聘技能要求情况。 2. 学习相关知识:深入学习上述提到的技能和工具知识。 3. 积累项目经验:可以参与一些相关的实践项目,例如收集数据、训练模型、派送模型等。 4. 思考商业价值:思考可以自动化的任务、驱动商业价值的核心以及商业领域的主要痛点。 5. 准备项目时,要明确项目目标,制定合理的开发时间表,清晰所需时间和人员。同时,为项目提供验收标准,尽量以数据衡量。 以上内容仅供参考,不同公司和项目可能有不同的具体要求。
2025-03-12
计算机小白学习AI的学习流程
对于计算机小白学习 AI,以下是一个较为系统的学习流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下案例: 二师兄在 2024 年 2 月接触到 AI 绘画,通过学习 SD 秋叶安装包和相关教程,进行炼丹实践。 雪梅 May 采用输入→模仿→自发创造的学习模式,在半年多的时间里保持较好的学习状态,学习 AI 相关知识。
2025-03-07
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
AIGC和GAI是什么关系
在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 GAI(Generative AI)强调技术。 生成式人工智能技术,是指具有文本、图片、音频、视频等内容生成能力的模型及相关技术。 GenAI 涵盖了 LLM 和 AIGC。 国内官方政策文件使用 GenAI 这个词相对科学。 公众传播一般会混用上述名词,但底层是 Transformer 结构。Transformer 底层是 function loss 损失函数,是一个大参数(千亿级别)的回归方程,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。大语言模型是一个 perfect memory,repeat 曾经出现的内容。
2025-03-31
画数据库关系图,用什么al软件好
以下是一些可以用于画数据库关系图的 AI 软件和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括数据库关系图,用户可通过拖放界面轻松操作。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如数据库的逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建包括数据库逻辑、功能和部署等多种视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建数据库逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括数据库逻辑视图和部署视图。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建数据库逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建包括数据库逻辑视图和部署视图等各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建包括数据库逻辑视图和部署视图等多种视图。
2025-03-22
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13