直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
新手学习AI方法
以下是为新手提供的学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-15
学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-15
24年AI大事件盘点
以下是 2024 年 AI 大事件的盘点: 10 月: 9 月 27 日:Reecho 睿声●三只羊录音事件涉及 AI 公司出面回应。 9 月 28 日:TeleAI●正式开源 TeleChat2115B。 10 月 1 日:快手●可灵 AI 全面开放 API,OpenAI DevDay。 10 月 2 日:Black Forest Labs●发布 FLUX1.1,苹果●推出多模态大模型 MM1.5。 10 月 3 日:OpenAI●发布 ChatGPT Canvas。 10 月 8 日:2024 年诺贝尔物理学奖。 10 月 9 日:2024 年诺贝尔化学奖。 10 月 10 日:字节●发布首款 AI 智能体耳机 Ola Friend,Vivo●增加蓝心端侧大模型 3B,谷歌●图像生成模型 Imagen 3 开放使用,智源●BGE 登顶 Hugging Face 月榜,State of AI 2024 报告发布。 10 月 11 日:智谱●GLM4Flash 与「沉浸式翻译」合作,北大&北邮&快手●开源高清视频生成模型 Pyramid Flow。 10 月 12 日:OpenAI●开源多智能体协作框架 Swarm,深势科技●完成数亿元人民币新一轮融资,苹果●质疑当前 LLM 缺乏真正的逻辑推理能力。 10 月 14 日。 11 月: 11 月 1 日:《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 11 月 1 日:《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 11 月 1 日:《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 在 2024 年,AI 商业界还发生了以下事件: 全球芯片出口管制下,中国仍成重要市场。美国商务部长吉娜·雷蒙多警告英伟达:“如果你围绕中国特定的需求重新设计芯片,我将在第二天控制它。”据悉,中国在美芯片制造商中所占的份额正在减少。据英伟达称,它从代表 NVIDIA 数据中心业务的 20%下降到“中个位数”。尽管中国实验室在进口硬件方面受到限制,但其当地分支机构目前没有控制权。字节跳动通过美国的甲骨文租用 NVIDIA H100 访问权限,而阿里巴巴和腾讯则与 NVIDIA 就在美国建立自己的数据中心进行谈判。与此同时,谷歌和微软直接向中国大型企业推销他们的云服务。 模型变得更便宜了。以前认为提供强大模型的成本过高,但现在提供这些模型的推断成本正在下降。OpenAI 更达到 100 倍下降!Google Gemini 生产了一种具有很强竞争力的定价系列!Gemini 1.5 Pro 和 1.5 Flash 的价格在推出后几个月内下降了 64%86%,而性能强劲,例如 Flash8B 比 1.5 Flash 贵 50%,但在许多基准测试中表现相当。注意:价格适用于<128K 令牌提示和输出。检索日期为 2024 年 10 月 4 日。考虑到计算成本很高,模型构建者越来越依赖与大型科技公司建立合作伙伴关系。反垄断监管机构担心这将进一步巩固现有公司的地位。
2024-12-15
有哪些入门级的搭建工作流术语
以下是一些入门级的搭建工作流术语及相关内容: 在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流。例如,使用获取新闻插件构建一个获取新闻列表的工作流;使用大模型节点接收并处理用户问题等。 端口设置方法:通过神秘代码让所有联网操作应用指定端口,端口号一般在代理选项中,将其填入相关代码,在 CMD 中复制粘贴代码回车,无反应即成功,需安装 Git。 工作流搭建过程:从零开始搭建工作流,如加载 checkpoint loader、prompt 等节点,按颜色连接,未连接会报错,连接后填写提示词即可生成图像。 工作流原理讲解:以做菜为例,空的 latent 是锅,代表图片大小;模型是食材,正反向提示词是菜谱,VE 是调料,按颜色连接各部分。 使用他人工作流:从工作流网站下载 json 文件,拖入相关界面,若有爆红说明有节点未安装,可在 manager 中安装缺失节点。 工作流本地与在线使用方法:介绍了工作流在本地和在线的使用步骤,如安装、处理报错、放置模型文件等。 解决工作流依赖冲突:讲解了通过修改 cast NODE 里的 requirements 来解决依赖冲突的方法。 网页版工具的使用:指出很多工具都有网页版,本地没有工具时可用网页版。 涉及的应用领域包括大摩托车商业应用、学会 AI 工具、自主搭建工作流、生图制作、视频制作、AI 设计创作、3D 动画、建筑方案图、个人应用、人物一致性出视频、设计工作流、各种实践应用、工作流的设计思路、家装和游戏设计、商业和生活、娱乐、综合应用、实现个人想法、游戏美术全流程等。
2024-12-15
零基础如何学习prompt
以下是零基础学习 prompt 的指南: 1. 准备工作: 拥有一个大模型账号,并熟悉与之对话的方式。推荐使用 ChatGPT4 ,国产平替有 。 2. 学习基础资料: 阅读 OpenAI 的官方文档,包括 。 3. 练习有效提问: 理解 GPT 的工作原理,包括 GPT 说人话的能力来源、“涌现”的产生、prompt 的概念和意义、现阶段使用 prompt 的原因。推荐观看 B 站 UP Yjango(于建国博士)的相关视频。 认真写出第一个 prompt 。 4. 注意 Token 限制: 形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度。 编写 Prompt 时珍惜 Token ,遵循奥卡姆剃刀原理,精简表达。 熟练使用中英文切换,了解自带方法论的英文短语或句子,如“Chain of thought”。 您可以关注作者小七姐的 prompt 学习社群 ,获取更多丰富内容。
2024-12-15
如何利用AI技术提升供应链企业的人效?
利用 AI 技术提升供应链企业的人效可以从以下几个方面入手: 1. 预测性维护:通过 AI 模型分析设备运行数据,预测设备故障,减少因设备故障导致的人力浪费和停工时间,提高人员工作效率。 2. 质量控制:利用 AI 检测产品缺陷,降低人工质检的工作量,提高质检的准确性和效率。 3. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,减少人工规划和决策的时间和错误,提升人员在供应链管理中的效率。 4. 客户服务:基于对话模型的 AI 客服机器人,可以自动处理常见问题,让人员能够专注于更复杂和重要的客户需求。 在制造业领域,AI 技术在供应链管理方面的应用包括: 1. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性,保障供应链的稳定运行。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程,提高供应链的响应速度和灵活性。 3. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率,缩短供应链的前置时间。 总的来说,AI 技术能够在供应链的各个环节发挥重要作用,提高企业的效率和竞争力。
2024-12-15
在大学里,AI的应用场景
在大学里,AI 有以下应用场景: 教育方面: 可以大规模部署个性化的学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。 有 AI 驱动的语言老师能实时交流并给予发音或措辞的反馈,如 Speak、Quazel 和 Lingostar 等。 出现了帮助学生解决数学问题的应用,如 Photomath 和 Mathly,以及通过模拟与杰出人物聊天来教授历史的应用,如 PeopleAI 和 Historical Figures。 学生在作业中利用 AI 助手,如 Grammarly、Orchard 和 Lex 等提升写作水平,还有协助创建演示文稿的工具,如 Tome 和 Beautiful.ai。 老师在 AIGC 的帮助下备课和授课,如北京市新英才学校的实践。 其他方面: 自动驾驶:用于开发自动驾驶汽车,提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 农业:分析农田数据,提高农作物的产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源的使用,提高能源效率。 需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2024-12-15
哪么我需要怎么做才能训练它呢
要在 Comfy UI 中训练 LoRA 模型,您可以按照以下步骤进行: 1. 下载相关文件并解压放入 custom_nodes 文件夹中,然后安装所需的依赖项。 打开命令提示符,输入相应内容。 确保后面有一个空格,将 requirements_win.txt 文件(Windows 系统)或 requirements.txt 文件(其他系统)拖到命令提示符中,按 Enter 键安装依赖项。如果为 Comfy 使用了虚拟环境,需先激活。 2. 注意一些事项: 图像必须放在以命名的文件夹中,数字应较小,如 5,且下划线必须有。 对于 data_path,必须写入包含数据库文件夹的文件夹路径。 3. 参数设置: 在第一行,可从 checkpoint 文件夹中选择任何模型,但据说进行 LoRA 训练需选择一个基本模型。 4. 训练过程: 选择一个名字为您的 LoRA,如果默认值不好,可更改值(epochs 数应接近 40),然后启动工作流程。 点击 Queue Prompt 后,所有事情会在命令提示符中发生,可查看训练进度。 5. 注意事项: 建议与字幕自定义节点和 WD14 标签一起使用。 制作字幕时禁用 LoRA 训练节点,防止 Comfy 在制作字幕前启动训练。 目前训练会在 Comfy 的根文件夹中的 log 文件夹中创建日志文件,该日志可能可在 Tensorboard UI 中加载。 默认情况下,训练结果直接保存在 ComfyUI 的 lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2024-12-15
国内文本生成视频AI工具
以下是一些国内的文本生成视频 AI 工具: 1. Hidreamai:有免费额度,支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。网址:https://hidreamai.com//AiVideo 2. ETNA:由七火山科技开发的文生视频 AI 模型,可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps,支持中文,时空理解。网址:https://etna.7volcanoes.com/ 此外,将小说转换成 AI 视频通常包括文本分析、角色与场景生成、视频编辑与合成等步骤,您可以利用以下工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-15
如何搭建一个RAG应用?
搭建一个 RAG 应用可以使用 LangChain 平台,以下是相关步骤和组件: 1. 数据加载器(DocumentLoader):这是一个对象,能从数据源加载数据并转换为包含 page_content(文本内容)和 metadata(元数据,如标题、作者、日期等)的文档对象。 2. 文本分割器(DocumentSplitter):可将文档对象分割成多个较小的文档对象,方便后续检索和生成,因为大模型输入窗口有限,短文本更易找到相关信息。 3. 文本嵌入器(Embeddings):能将文本转换为高维向量的嵌入,用于衡量文本相似度以实现检索功能。 4. 向量存储器(VectorStore):可存储和查询嵌入,通常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):能根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器的相似度搜索功能检索。 6. 聊天模型(ChatModel):可根据输入序列生成输出消息,通常基于大模型如 GPT3 实现文本生成功能。 使用 LangChain 构建 RAG 应用的一般流程如下: 首先,使用合适的数据加载器根据数据源类型加载数据。例如,数据源是网页可用 WebBaseLoader 加载和解析网页得到文档对象。 然后,用合适的文本分割器将文档对象分割成较小的符合要求的文档对象。如文本是博客文章,可用 RecursiveCharacterTextSplitter 分割。 接下来,用文本嵌入器将文档对象转换为嵌入,并存储到向量存储器中。可根据嵌入质量和速度选择合适的嵌入器和存储器,如 OpenAIEmbeddings 和 ChromaVectorStore。 之后,创建向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数。 最后,创建聊天模型,根据性能和成本选择合适的模型,如 OpenAIChatModel。 以下是一个使用 LangChain 构建 RAG 应用的示例代码。
2024-12-15