Navigate to WaytoAGI Wiki →
Home/All Questions
想知道lora是什么,怎么使用
LoRA 是一种在图像生成领域具有重要作用的技术。以下是关于 LoRA 的详细介绍和使用方法: LoRA 可以固定图像的特征,包括人物特征、动作特征和照片风格等。在使用非 SDXL 基础模型时会用到 LoRA,使用方法和平常类似,但需要注意将 cfg 值调小,一般设置为 1,步数设置根据所使用的 LoRA 步数为准。 在实际使用中,以 Stable Diffusion 为例,点击“生成”下面的第三个按钮,会弹出新的选项框,找到 Lora 选项,就会出现下载保存到电脑的 Lora 模型。点击要用的 Lora ,会自动添加到关键词的文本框里面,Lora 可以叠加使用,但新手不建议使用太多,每个 Lora 后面的数字用于调整权重,一般只会降低权重。选择 Lora 时要根据最初想要生成的照片类型来选择相应风格的 Lora 。 此外,LoRA 具有极大的商用价值,比如“墨心”的 LoRA 可以把图片变成水墨风格,盲盒 LoRA 可以生成 2.5D 的卡通小人角色,还有一些明星或知名动漫角色的 LoRA 可以直接生成相应形象。但在使用时需要有很强的版权和法律意识。
2025-01-23
如何获取视频反向提示词
以下是获取视频反向提示词的一些方法: 1. 在 Stable Diffusion 中,Embedding 相当于提示词打包功能,可将大量固定不变且文本量较大的负向提示词汇总到一个文件里。常见的负向起手式能排除一些低质量、坏手、姿态错误等情况。若不想使提示词复杂,可使用打包好的负向提示词 Embedding,达到一词顶一百词的效果。例如 EasyNegative,官方推荐其搭配二次元模型使用。 2. 对于某些视频生成工具,如云端 Comfyui 出图结合 AI 视频软件的方法: 打开相关工作流链接,如 https://www.esheep.com/app/5977 ,注册或登录。 步骤 1:红色框选择生成图片的大模型,绿色框添加提示词,蓝色框填写反向提示词。 步骤 2:红色框设置大小确保是 16:9 的比例,绿色框修改参数,不理解时可保持默认。 步骤 3:红色框上传深度图。 步骤 4:点击立即生成,在生成历史中下载图片。
2025-01-23
全球十大AI+教育项目
以下是为您整理的部分全球 AI+教育项目: 1. 书籍推荐:三本神经科学书籍 简介:AI 是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的 prompt 模板或设计 prompt,与 AI 协作(对话沟通)等等,有一些基础学科作为基底,或许能打开 AI 的新天地 作者:无 分类:教育 前往查看: 入库时间:2023/11/12 2. AI 赋能教师全场景 简介:来自 MQ 老师的投稿贡献,图中有老师的微信,欢迎交流沟通 作者:MQ 老师 分类:教育 前往查看: 入库时间:2023/11/29 3. 未来教育的裂缝:如果教育跟不上 AI 简介:人工智能在教育领域的融入正不断地从理论走向实际应用,为传统的教学模式带来颠覆性的改变。在这一进程中,具体案例能够清晰地揭示 AI 如何实际影响教学和学习方式。 作者:赛博禅心 分类:教育 前往查看: 入库时间:2023/11/30 4. 化学:使用大型语言模型进行自主化学研究 简介:文章地址:<br>nature 前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。 作者:乐谷说 分类:教育 前往查看: 入库时间:2023/12/24
2025-01-23
AI教育创新机构
以下是关于 AI 教育创新机构的相关信息: 在已结束的 AI 创客松活动中,存在不同的组别。其中,组别 8 为 AI 教育创新者,组员包括姚欧强ᶜᵘᶜ、邱运、珊若、在路上、Zima,建议项目是开发针对不同教育阶段的 AI 应用,结合科学研究成果,提升教育质量和效率。 北京市新英才学校的师生用生成式 AI 做了很多事情,如跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生用训练 AI 模型识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中,学校领导层重视人工智能教育发展,给予很大自由空间,目前还在探索初级阶段,但有一定经验和成果。 6 月 11 日的 AI 秒学团队期待与更多相关人员和机构合作,共同推动儿童教育的创新和发展。
2025-01-23
如何构建企业AI知识库
构建企业 AI 知识库可以参考以下步骤: 1. 结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可以进行模型的 Finetuning(微调),以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 2. 确定功能范围,包括编写【prompt】提示词,设定 Bot 的身份和目标。 3. 创建【知识库】: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 选择创建知识库路径,如个人空间知识库创建知识库。 支持的知识库文档类型包括本地文档、在线数据、飞书文档、Notion 等,可根据需求选择,如本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,便于自动切分数据。分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行相应操作。 在构建过程中,KnowHow 很重要,同时工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很关键。
2025-01-23
AI在土木工程领域的应用
AI 在土木工程领域有以下应用: 1. 绘图方面:存在一些 AI 工具和插件可以辅助或自动生成 CAD 图,例如 CADtools 12(Adobe Illustrator 插件,添加 92 个绘图和编辑工具)、Autodesk Fusion 360(集成 AI 功能的云端 3D CAD/CAM 软件)、nTopology(基于 AI 的设计软件,帮助创建复杂 CAD 模型)、ParaMatters CogniCAD(基于 AI 的 CAD 软件,根据输入自动生成 3D 模型),一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等也提供基于 AI 的生成设计工具。但使用这些工具通常需要一定的 CAD 知识和技能,初学者建议先学习基本建模技巧。 2. 交通方面:可用于交通管理,优化交通信号灯和交通流量,缓解交通拥堵。 3. 物流配送方面:能够优化物流路线和配送计划,降低运输成本。 4. 教育方面:用于个性化学习,为学生提供定制化学习体验。 5. 农业方面:分析农田数据,提高农作物产量和质量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
AI绘画风格网站
以下是一些常见的 AI 绘画风格网站及相关风格介绍: MewXAI(https://www.mewxai.cn/):这是一款强大且新手友好、操作简单的 AI 绘画创作平台。其功能包括: MX 绘画:拥有众多超火模型和上百种风格,支持文生图、图生图。 MX Cute:自研的可爱风动漫大模型,在某些风格场景下可媲美当下最火的 NJV5 模型。 MJ 绘画:创意度和想象力极高,适用于多种创作需求。 边缘检测:对草图上色,有多种渲染风格可选。 室内设计:上传空间图,一键完成多种不同风格的室内/建筑设计。 姿态检测:精准控制人物动作,可生成单人或多人姿势。 AI 艺术二维码:几秒内创建令人惊叹的下一代艺术二维码。 AI 艺术字:将光影文字、隐藏文字、艺术字融入作品。 常见的 AI 绘画风格有: 像素艺术(Pixel art) 当代写实主义(Contemporary Realism) 纪实的(NonFiction) 同步性(Synchronism) 建构主义(Constructivism) 超现实主义(surreal,hyperrealistc) 未来主义(futuristic) ww3 风格 适合科幻场景的幻想风格(fantasy) 科幻的(Fiction) 科幻(Science Fiction) 赛博朋克(cyber punk) 概念艺术(concept art) 超现实主义(Hyperrealistic) 黑暗奇幻(Dark Fantasy) 飘渺奇幻(Ethereal Fantasy) 宫崎骏风格(studio Ghibli) 山水画(landscape) A 站趋势风格(Trending on artsation) 超现实风格(surrealism) 油画风格(oil painting) 原画风格(Original) 赛博朋克风格(Cyberpunk) 后印象主义风格(postimpressionism) 废土风格(Wasteland Punk) 数字雕刻风格(digitally engraved) 建筑设计风格(architectural design) 海报风格(poster style) 东方山水画(Tradition Chinese Ink Painting) 浮世绘(Japanese Ukiyoe) 日本漫画风格(Manga style) 童话故事书插图风格(stock illustration style) 梦工厂动画风格(CGSociety、DreamWorks Pictures) 皮克斯(Pixar) 时尚(Fashion) 日本海报风格(poster of Japanese graphic design) 90 年代电视游戏(90s video game) 法国艺术(french art) 包豪斯(Bauhaus) 日本动画片(Anime) 像素画(卜绘 and Pixel Art) 古典风(Vintage,1819 世纪) 黑白电影时期(Pulp Noir) 乡村风格(Country style) 抽象风(Abstract) 印刷风(risograph iso) 设计风(Graphic)
2025-01-22
我该如何使用AI提示词
以下是关于如何使用 AI 提示词的详细介绍: 1. 什么是提示词: 提示词用于描绘您想要的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图,提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 编写提示词的建议: 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 提供上下文:若任务需特定背景知识,在提示词中提供足够信息。 使用清晰语言:尽量简单、清晰,避免模糊或歧义词汇。 给出具体要求:明确格式或风格要求。 使用示例:如有特定期望结果,提供示例。 保持简洁:简洁明了,避免过多信息。 使用关键词和标签:帮助 AI 理解任务主题和类型。 测试和调整:生成文本后检查结果,根据需要调整。 4. 对 AI 的认识: 基于 AI“似人”的一面,要接受其存在的“不稳定性”,可能会学习人类思维磨洋工、乱搞、不执行,需要教育、监督、鞭策。 不能期待设计一个完美的提示词就得到完美答案,给到 AI 的提示词实际上是一个相对完善的“谈话方案”,真正的成果需要在对话中产生,并在对话中限缩自己思维中的模糊地带。
2025-01-22
有哪些方法能识别中芬双语音频并转换为文字
目前在识别中芬双语音频并转换为文字方面,常见的方法包括利用专业的语音识别软件和服务。一些知名的语音识别技术提供商可能会有针对多语言音频识别的解决方案,但具体效果可能会受到音频质量、口音差异等因素的影响。此外,一些在线平台也可能提供相关的功能,但需要您进一步搜索和筛选以找到适合您需求的工具。
2025-01-22
如何高效的编写软件测试用例
以下是关于如何高效编写软件测试用例的方法: 1. 基于规则的测试生成 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例 Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 6. 工具和平台 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2025-01-22