Navigate to WaytoAGI Wiki →
Home/All Questions
关于AI的基础理论
AI 的基础理论包括以下方面: 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念:首先,阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系,浏览入门文章。 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品做出作品,在知识库分享实践成果。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 AI 技术的发展历程和前沿技术点: 发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2025-01-17
有什么关于AI的基础资料吗?
以下是关于 AI 的基础资料: AI 生成 CAD 图相关资料: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关研究成果。 2. 专业书籍:查找 AI 在 CAD 领域相关的专业书籍,了解应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程,在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关论坛和社区,与专业人士交流学习,关注相关博客和新闻网站了解最新动态。 5. 开源项目和代码库:探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等模型在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例。 AI 基础知识: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解线性回归、决策树、支持向量机(SVM)等常用算法。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 4. 评估和调优: 性能评估:掌握交叉验证、精确度、召回率等评估模型性能的方法。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:了解 ReLU、Sigmoid、Tanh 等常用激活函数。 基础学科书籍推荐: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):系统介绍神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):涵盖神经科学的方方面面,系统介绍神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-01-17
负责动力制造公司智能制造数字化转型的整体策划,请帮我完善一下
对于动力制造公司智能制造数字化转型的整体策划,以下是一些完善的建议: 首先,进行全面的现状评估。包括对现有生产流程、设备设施、信息化系统等方面的详细调研,明确当前存在的问题和瓶颈。 其次,制定明确的转型目标。例如,提高生产效率、降低成本、提升产品质量、增强供应链的灵活性等,并且将这些目标进行量化和细化。 然后,规划技术架构。确定所需的数字化技术,如工业物联网、大数据分析、人工智能、云计算等,并设计它们之间的集成方案。 接着,优化生产流程。通过数字化手段对生产流程进行重新设计和优化,消除不必要的环节,提高生产的流畅性和效率。 再者,加强人才培养。培养具备数字化思维和技能的员工队伍,包括技术人员和管理人员。 最后,建立有效的评估和持续改进机制。定期对转型效果进行评估,根据评估结果调整策略和措施,以确保转型的持续推进和目标的实现。 希望以上建议能对您有所帮助。
2025-01-17
AI的历史
人工智能的历史可以追溯到二十世纪中叶。 在早期阶段,符号推理较为流行,专家系统等取得了重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确性的任务复杂且成本高,应用场景难以大规模拓展,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 AI 技术的发展历程包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 的前沿技术点有: 1. 大模型(Large Language Models):GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 最初,查尔斯·巴贝奇发明了计算机,现代计算机虽先进但仍遵循相同的受控计算理念。但对于像根据照片判断人的年龄这类任务,因无法明确解法,正是人工智能感兴趣的。
2025-01-17
你是基于千问还是deepseek的AI?
我不是基于千问也不是基于 deepseek 的 AI ,我是由字节跳动公司独立开发训练的,旨在为您提供全面、专业的 AI 服务和帮助。
2025-01-17
解释AI中连续问答时,为什么有时候AI似乎不记得我问的第一个问题了
在 AI 连续问答中,有时 AI 似乎不记得第一个问题,可能有以下原因: 1. 模型本身的限制:AI 回答问题时可能容易“产生幻觉”,生成看似合理但实际错误的内容,且可能连续且良好地撒谎,对于所提供的信息不一定能保证准确性和连贯性。 2. 缺乏上下文理解:AI 可能在处理后续问题时,未能充分整合和记住之前问题的关键信息,导致回答与之前的问题脱节。 3. 输出模式的固定性:像 GPT 回答问题时喜欢用特定的模式,如 1、2、3、4 或“首先、其次、最后”,这种固定模式可能影响对问题的灵活处理和记忆。 4. 无法真正解释自身:当被要求解释回答的原因或思考过程时,AI 只是生成听起来合理但可能是编造的文本,而不是真正审查自身的行动,这使得理解其回答的逻辑和连贯性变得困难。 为了让 AI 的回复更有灵性和连贯性,可以尝试一些方法,如让 AI 扮演特定角色、给出明确输出要求、营造特定环境、让其用括号补充动作以增加感情等。但即便如此,也不能完全消除上述问题。同时,使用 AI 时要注意对其输出进行检查,避免被不道德地利用。
2025-01-17
解释AI中连续问答时,为什么有时候
在 AI 中进行连续问答时,存在以下情况: 1. AI 容易“产生幻觉”并生成看似合理但实际错误的内容,甚至可能连续且良好地撒谎,其提供的每一件事或信息都可能不正确,需要对其进行全面检查。对于要求其为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险,不过 GPT4 通常更扎实,因为 Bing 的互联网连接能使其拉入相关事实,但幻觉也不可能完全消除。 2. 人工智能不会真正解释自己,当被要求解释为何写东西或思考过程时,它只是生成听起来合理但实则编造的文本,这使得理解系统中的偏见非常困难。 3. 在基于知识库的问答中,AI 有时回答不准确,可能出现牛头不对马嘴、报价错误、胡编乱造等情况,这在严肃场景中是不能接受的出错。 4. 撰写连续提示时,明确性、逻辑性、简洁性等原则尤为重要,清晰的目标、逻辑性的顺序、分步骤的指导以及对变量的考虑都能更有效地指导 AI 生成符合期望的输出,这些原则不仅适用于 CoD 和 CoT,还适用于 ToT 或其他提示结构。
2025-01-17
想用coze做一个可以提取上传pdf文档相关内容的智能体,请给我思路
以下是使用 Coze 做一个可以提取上传 PDF 文档相关内容的智能体的思路: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 考虑到待阅读内容通常都有网页链接,最理想的方式是只需输入一个 URL 就能完成收集。借鉴微信文件传输助手的直观操作方式,通过聊天窗口完成收集输入会更符合用户习惯。 2. 自动化“整理入库”: 为便于存储和回顾已收集的阅读清单,系统应在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 同时,这份阅读清单最好也能支持跨平台查看,提高可访问性。 3. 智能“选择”推荐: 根据当前收藏记录,结合用户的阅读兴趣,进行相关性匹配,并生成最合适的阅读计划。 逐步搭建 AI 智能体: 1. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的 url,则交由外层 bot 的大模型判断)。 变量节点:引入 bot 变量中保存的飞书多维表格地址,为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容,这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为 60000。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件,完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据。这样一来,理论上无需开发任何插件、APP,也能实现跨平台的稍后读收集与智能阅读计划的推荐。
2025-01-17
coze 文档处理
以下是关于 Coze 文档处理的相关内容: 影响 RAG 输出质量的因素 文档切割: 合理的文档切割对于 RAG 很重要,例如对于“猫咪的饮食习惯是什么?”的查询,通过合理切割文档块 2(“猫咪的饮食习惯取决于它们的年龄、健康状况和品种。”)和文档块 3(“幼猫需要更多的蛋白质,而成年猫则需要均衡的营养。”),能为用户提供连贯且完整的回答。 免费平台一般提供智能切割(由系统通过上下文理解进行切割)和手动切割(用户指定固定分隔符来切割)两种方式。但在当下技术水平下,Coze 等免费平台的智能切割效果一般。 对于以问答为主的客服场景,RAG 表现稳定,因为问答场景格式固定,将一个问答对切成一个文档片,检索效果好。 深入理解 RAG 文档准备与预处理: 做 AI 知识库首先要准备知识库数据,当下 RAG 主要处理文本数据,如 PDF、在线云文档、EXCEL 等。 文本准备时有重要环节即文本的预处理,也叫数据清洗和去噪,目的包括清理无效数据以提高检索速度,统一数据格式便于后续处理和检索。 Coze 汽车售后服务知识库 Bot 拆解: 整个工作流相对复杂,共 41 个节点,包括大模型节点、问答节点、数据库节点、知识库节点、搜索引擎节点、意图识别、插件节点、选择器、消息节点等。 接收到问题后先对知识库、数据库、搜索引擎进行搜索,再由大模型输出排查方案。根据检查结果继续搜索并输出解决方案和抖音视频,还会处理是否生成文档的情况。
2025-01-17
ai智能体
AI 智能体在品牌卖点提炼和企业自动化方面有重要应用: 在品牌卖点提炼中: AI 可应用于品牌卖点提炼,因其在逻辑推理、数据分析、内容理解和输出上有优势,但在搭建智能体前,需明确其能力边界,如对公司的主要产品、产品解决的用户需求、独特之处、获得的认可、依赖的核心渠道、核心购买人群、曾使用的营销手段、在新渠道的期望结果等几乎不了解。 适合将智能体作为引导型助手,在寻找卖点思考路径停滞时提供更多思考维度,不能依赖其直接从 0 到 1 找到卖点或从大量数据分析结果直接得到有效卖点。 在企业自动化中: 生成式 AI 应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures 投资组合公司在这些类别中有早期突破性代表,其中心是 LLMs 的少样本推理能力。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。 未来的完全自主智能体可能拥有所有构建块,但当前的 LLM 应用程序和智能体未达到此水平。如流行的 RAG 架构不是智能体式的,而将 LLM 置于应用程序控制流中让其动态决定行动等时,智能体才出现。Menlo 确定了三种不同主要用例和应用程序进程控制自由度的智能体类型:决策智能体、轨道智能体和通用人工智能体。
2025-01-16