直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
各个国家对生成式人工智能所持态度
以下是各个国家对生成式人工智能所持的态度: 欧洲:《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区。执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 美国:政府官员对生成式人工智能技术表现出兴趣,在评估其带来的机会的同时,也警示潜在风险。政府机构开始就相关问题征求公众意见,预计未来几个月内将有更多行动。例如,白宫宣布将采取更多措施加强美国的人工智能研究、开发和部署。此外,美国对中国实施了更严格的出口管制和投资限制。 中国:是第一个开始制定生成式人工智能监管框架的国家,从 2022 年开始陆续出台全面指南,如今审查机构正在介入。持续生产 SOTA 模型,由国家互联网信息办公室监督。政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。禁止访问 Hugging Face 等国外网站,但官方批准的“主流价值观语料库”可作为训练数据源。 在移动端应用领域,尽管硅谷被视为 AI 核心地带,但世界各地都在积极构建相关产品。在生成式 AI 网页端和移动端产品的开发方面,不同地区的分布有所不同。例如,超过 30%的生成式 AI 网页端产品起源于美国湾区,而在移动应用开发者中,仅有 12%的团队设立于此。同样,超过一半的顶级生成式 AI 网页端产品在美国开发,而不到 1/3 的移动端应用源自美国本土。在全球范围内,包括亚洲(如中国、印度、韩国等)、大洋洲(如澳大利亚)、欧洲(如英国、法国、德国等)、中东(如以色列、土耳其等)的许多国家和地区都在参与生成式 AI 的发展。
2024-12-26
即梦AI教程
以下是关于即梦 AI 的教程: 即梦 AI 作图教程 1. 打开即梦 AI 官网:https://jimeng.jianying.com/aitool/home 2. 点击 AI 作图中的图片生成。 3. 填写绘图提示词,选择生图模型 2.1,点击立刻生成。 即梦 AI 简介 即梦是剪映旗下类 Sora 的 AI 视频生成工具,原名 Dreamina,已于 2024 年 5 月正式改名为“即梦”。这段时间在内测,大家测完普遍反馈不错,但也存在一些缺点。 优点 动效方面采取了比较激进的策略,需要很强的动效需要表现的时候可以考虑使用。 超预期的,它对画面识别非常准确。 优势在于(但不限于)人物微表情、汽车行驶等画面的表现。 首尾帧相连的功能。 对于简单的画面有非常不错的表现力,能够让主体完成超出预期的流畅动效,尤其是简单的三维物体。 人物的面部特写表现非常惊艳。 缺点 精度不太够,后期需要用到 topaz video 等超分工具再放大。 成也动效,败也动效,丰富的动效带来的是画面容易“出轨”的问题,导致 Dreamina 的画面稳定性有不足。 为了更丰富的动效,视频的输出存在掉帧等问题。 但运动幅度不能开的太过,否则会有用力过猛的感觉,且画面容易崩塌。 总体 3 6s 的生成长度一般。 一键生成 Jellycat 教程 1. 打开即梦 AI,选择图片生成。https://jimeng.jianying.com/ 2. 输入提示词,格式为:Jellycat 风+毛茸茸的XXXX……随便发挥您的创意! 3. 选择最新的模型,将精细度拉到最大值。 4. 点击生成,几秒钟后就能看到您心仪的图片效果。 案例参考: 提示词:jellycat 风格,一个毛茸茸的埃菲尔铁塔 提示词:jellycat 风格,一个毛茸茸的锅子和饺子 提示词:jellycat 风格,一个毛茸茸的星巴克咖啡杯 提示词:jellycat 风格,一个毛茸茸的水蜜桃 原文链接:https://mp.weixin.qq.com/s/4w1dEvlH1l6mqTrPLGPC4g 关注「烧拍 AI」了解更多 AI 资讯!
2024-12-26
初学AI
对于初学者学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-26
ai提示词
以下是关于 AI 提示词的相关内容: 在舞蹈音乐方面,有 108 个用于生成 AI 舞曲的提示词,例如“Punchy 4/4 beats,electro bass,catchy synths,pop vocals,bright pads,clubready mixes,energetic drops”,每个提示词都精心制作,以有效地封装各种舞蹈音乐流派的具体特点和大气质量,同时确保适应不同的聆听环境。这些提示词涵盖了各种舞曲子流派,如节奏感强的四四拍鼓点、电子低音、易于记住的合成器旋律、流行音乐风格的主唱、明亮的和弦音效、适合在夜店播放的混音以及高潮部分等。 对于 SD 新手入门的提示词,有以下相关资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2024-12-26
生成式 AI 的人机协同
生成式 AI 的人机协同主要分为以下 3 种产品设计模式: 1. Embedding(嵌入式):人类完成大多数工作。 2. Copilot(副驾驶):人类和 AI 协同工作。 3. Agent(智能代理):AI 完成大多数工作。 在 Agentic Workflow 中,不同角色的 Agent 可使用 Multiagent Collaboration 的方法,按照任务要求自主规划选择工具、流程进行协作完成任务。例如产品经理角色,其诉求可通过 Agents 拆解成多个独立任务,遵循不同工作流,生成大体符合期望的输出结果,再进行修改达到可用阶段。 从原子能力层思考,可抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,所有这些都围绕“输入”“处理”“输出”“反馈”几个词,构建最底层的信息处理逻辑,如同四个齿轮相互衔接运转,从需求输入到结果输出,围绕信息加速推动。 此外,搜索引擎作为互联网基础设施和入口,与基于大模型的聊天机器人在解决问题的目标上根本一致。自 ChatGPT 发布,其问答形式被认为将对传统搜索引擎带来颠覆。 在智能时代,软件应从简洁开始,逐渐变成无所不在的助理或智能体,辅助甚至直接完成任务,人机协作重点在于目标与结果,AI 劳动力的终极目标是完全自动化并融入人类社会。 在教育领域,ChatGPT 掀起生成式人工智能浪潮,教育圈受到影响。人机协同共创人机混合智能,培养高阶通识能力、跨学科创新思维、协作与互动,涉及知识获取与处理、多模态多样化内容、伦理辨析与讨论等方面,形成了多种教育模式和理念的发展与融合。
2024-12-26
评测模型生图好坏的标准
评测模型生图好坏的标准主要包括以下几个方面: 1. 模型选择: 基础模型(Checkpoint):生图必需,不同模型适用于不同主题。 Lora:低阶自适应模型,可用于精细控制面部、材质、物品等细节。 ControlNet:控制图片中特定图像,如人物姿态、生成特定文字等。 VAE:类似于滤镜,可调整生图饱和度。 2. 提示词设置: 正向提示词(Prompt):描述想要 AI 生成的内容。 负向提示词(Negative Prompt):描述想要 AI 避免产生的内容。 3. 图片视觉质量: 自然度和美观度是关键指标。 可从数据和训练方法两方面提升,如使用特定的网络结构。 4. 文字生成能力: 目前未有模型具有良好的中文文字生成能力。 提升中文文字生成能力需从多方面准备数据。 需要注意的是,模型生图的效果并非完全由这些标准决定,还可能受到其他因素的影响,需要不断尝试和学习以获得更好的生图效果。
2024-12-26
AI现阶段的成因
AI 现阶段的成因主要包括以下几个方面: 1. 在软件领域,AI 软件公司有三种起源和结果:运行在现有软件之上的 AI 工具,如为 Zoom 会议自动记录会议笔记;运行在现有软件之上且有机会取代现有软件的 AI 工具,如为 Zoom 会议记录笔记后构建视频会议并推销;成为劳动力的 AI 工具,这是一个全新的类别。平台转变促成了前两种情况。同时,软件市场与白领劳动力市场相比规模较小,许多增长最快的公司将现有的昂贵服务转化为大众的低价产品。 2. 在医疗保健和生物技术领域,AI 正在工业化生物制药和医疗保健,应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。 3. 在教育领域,学习通常具有功利导向,“突破性新技术+垂直行业知识”的组合能为学习者带来更高投入产出比。在 AI 领域,让 AI 工程师懂行业、让行业专家懂 AI 投入产出比高,但前提是找到高价值应用场景。现阶段“AI 口嗨者众,AI 实干家寡”的主要原因是缺乏带来足够正反馈的高价值应用场景。
2024-12-26
给多张图片生成一个全身图
以下是关于生成多张图片和控制图片生成的相关知识: 对于 DALL·E 3 : 描述发送给 DALL·E 的文本应极其详细且超过 3 句话。 生成图像的分辨率可选择 1792x1024(宽)、1024x1024(方)、1024x1792(高),默认使用 1024x1024(方),除非提示词建议使用其他尺寸。 若用户未指定生成的标题数量,默认生成 4 个,且应尽量多样化。生成图像数量不超过 4 个。 对于 Stable Diffusion : 调节宽度和高度可控制照片大小。一般生成正方形照片可设为 512x512,生成长方形照片时,电脑配置差不建议设为 1024、2048 等较大尺寸。 生成多张照片时,通常只调整“总批次数”,即一张一张生成;同时调整“单批数量”对显卡有要求。 让生成的图片更可控的技巧: 上传多种图片进行融合生成时,一张图片最好只有一种特征。 可使用多重关键词,为不同单词赋予不同权重,如 hot::2 dog 中 hot 对结果影响更大;也可通过负数权重减弱某种元素比重,如 red::.5 可减少大红色。 还可用 no 参数弱化某个元素,如 no hands 可降低手出现问题的概率,其与 hands:0.5 等价。 可设置 v 版本。
2024-12-26
在 COMFY UI 中,关于 Tile 平铺预处理器怎么工作流中怎么使用
在 ComfyUI 中,关于 Tile 平铺预处理器的使用方法如下: 1. 平铺和切片都是用于处理大尺寸视频的技术,可以帮助在有限的 GPU 内存下处理高分辨率视频。 tile_sample_min_height:96,最小平铺高度。 tile_sample_min_width:96,最小平铺宽度。这两个参数定义了在使用平铺时的最小尺寸。 tile_overlap_factor_height:0.083,高度方向的重叠因子。 tile_overlap_factor_width:0.083,宽度方向的重叠因子。这些因子决定了平铺时各个块之间的重叠程度。 enable_vae_tiling:设置为 false,表示不启用 VAE(变分自编码器)的图像平铺。 enable_vae_slicing:设置为 false,表示不启用 VAE 切片。如果启用了平铺(tiling),它会将大图像分割成小块进行处理,然后再组合起来,这有助于处理大分辨率的视频。VAE 切片(如果启用)可以通过分割输入张量来分步计算解码,这有助于节省内存。 2. 将您的 ComfyUI 更新到最新。 3. 将 clip_l 和 t5xxl_fp16 模型下载到 models/clip 文件夹。确保您的 ComfyUI/models/clip/目录中,有 t5xxl_fp16.safetensors 和 clip_l.safetensors,您可以改用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用量,但如果您的 RAM 超过 32GB,建议使用 fp16。跑过 flux 就有这些模型,没有的话翻之前文章有下载。 4. 在您的 ComfyUI/models/vae/文件夹中,有 ae.safetensors。 5. 将最开始下载的 flux1filldev.safetensors 放于 ComfyUI/models/unet/文件夹中。 6. 使用 flux_inpainting_example 或者 flux_outpainting_example 工作流。
2024-12-26
COMFY UI中的Tile平铺预处理器
在 COMFY UI 中,关于 Tile 平铺预处理器: CogVideoX5b 开源文生视频: 分块长度(t_tile_length):时间维度上的分块大小,用于处理长视频,值为 16。如果和帧数一致,画面会比较稳定,但变化会少很多。 分块重叠(t_tile_overlap):时间维度上相邻分块的重叠帧数,值为 8。 解码: tile_sample_min_height:最小平铺高度,值为 96。 tile_sample_min_width:最小平铺宽度,值为 96。 tile_overlap_factor_height:高度方向的重叠因子。 tile_overlap_factor_width:宽度方向的重叠因子。 enable_vae_tiling:设置为 false,表示不启用 VAE 的图像平铺。 enable_vae_slicing:设置为 false,表示不启用 VAE 切片。启用平铺会将大图像分割成小块处理再组合,有助于处理大分辨率视频。VAE 切片可通过分割输入张量分步计算解码以节省内存。 图像编码: chunk_size:在时间维度上每次处理的帧数,值为 16,有助于处理长视频序列时管理内存使用。 enable_vae_slicing:控制是否启用 VAE 切片,设置为 false 时不使用。 此外,ComfyUI 中的 SD3 预训练文本编码器使用了三个固定的预训练文本编码器(CLIPViT/G、CLIPViT/L 和 T5xxl)。CLIPViT/G 优化了图像和文本之间的关系理解,CLIPViT/L 专注于从图像和文本对中提取特征,T5xxl 是一个强大的文本生成模型,增强了文本提示的理解和生成能力。
2024-12-26