直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
coze如何接入大模型
要接入大模型,以下是相关步骤: 1. 对于直接调用大模型(之前完成过 coze 对接的同学,直接去二、百炼应用的调用): 百炼首页:https://bailian.console.aliyun.com/ 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。 获取 key 的方法: 视频教程: 图文教程:以下是参考配置及示意图。 注意:需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明没有实名认证,点击去,或查看自己是否已认证。 2. 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息,点击确认后完成工作流的新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。
2024-12-13
GPU如何选
以下是关于如何选择 GPU 的一些指导: 在腾讯云购买 GPU 的流程: 1. 在腾讯云首页的搜索框搜索“GPU”,在搜索结果中点击「立即选购」。 2. 选择有空余的机器,若账户没钱可能需要充钱,云平台有时会有免费活动。计费模式建议选择「按量计费」,地域尽量选择本地城市或较近城市,以减少访问延时。 3. 配置方面,如果使用时长不长或资金充裕,可选择顶配。要记住选择的 GPU 型号和系统镜像版本,后续安装驱动会用到。系统镜像选择 Windows 的,尽量选择 2016 版本以上。系统盘容量建议大于 50GB,最好 100GB 左右。 4. 设置好系统和镜像后,其他选项按默认即可,点击进入「设置网络和主机」。带宽计费模式选择「按流量计费」。 5. GPU 服务器的密码需自己设置并记住,访问时需要输入。其他信息选择默认,点击「确认配置信息」,勾选阅读协议,点击「开通」并确认即可完成购买。 选择 GPU 时的考虑因素: 1. 训练与推理:训练大型模型通常在机器集群上完成,最好每台服务器有多个 GPU、大量 VRAM 以及高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但较难获取且通常需要长期合作承诺。如今更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群仍需长期承诺。 2. 内存要求:大型 LLM 的参数数量多,需要分布到多个卡中。较小的模型如 Stable Diffusion 需要的 VRAM 较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。 算力相关: GPU 的强大决定了生图和训练的效率,越强大的算力在生图(推理)和训练上消耗的时间越短。显存在生图过程决定了直接推理的图片大小,在训练时受制于训练工具的要求,显存容量是门槛。选择算力时需要综合 GPU 性能和显存大小两个参考维度。由于需要使用 CUDA 加速,显卡大概率只能选择 NVIDIA 的。至于买哪个型号的显卡,取决于预算和对算力换算成时间的忍耐度。可参考相关性能测试报告:https://docs.google.com/spreadsheets/d/1Zlv4UFiciSgmJZncCujuXKHwc4BcxbjbSBg71SdeNk/editgid=0
2024-12-13
大模型 文创领域的应用
大模型在文创领域有广泛的应用,具体如下: 1. 文本生成和内容创作:可生成连贯、有逻辑的文本,用于撰写文章、新闻报道、诗歌和故事等。 2. 聊天机器人和虚拟助手:凭借自然语言处理能力,实现与人类自然对话,提供客户服务、任务提醒和信息咨询。 3. 编程和代码辅助:能进行代码自动补全、bug 修复和代码解释,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体、评论和反馈中的文本,识别用户情感和观点,为市场研究和产品改进提供支持。 6. 教育和学习辅助:创建个性化学习材料、回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成图像,未来可能扩展到视频生成。 8. 游戏开发和互动体验:用于创建游戏角色对话、故事情节生成,增强玩家沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。二者在处理的信息类型、应用场景和数据需求方面有所不同。大型语言模型主要用于自然语言处理任务,依赖大量文本数据训练;大型多模态模型能处理多种信息类型,应用更广泛,需要多种类型数据训练。 展望 2025 年,AI 行业在以下方面有创新机会: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域应用,同时优化模型效率和运行成本,加速行业创新与跨领域融合。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升环境感知与推理能力和实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合多模态数据,提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。
2024-12-13
学ai先学什么
对于新手学习 AI,建议您从以下几个方面入手: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念。 了解人工智能的主要分支,如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您不会代码,对于 AI 可以尝试了解以下作为基础: 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-13
介绍一个给公司起名的ai
以下为您介绍几个与公司起名相关的 AI 工具: 1. Character.ai:由 Noam Shazeer 和 Daniel De Freitas 于 2022 年 9 月创建的基于 LLM 的聊天机器人网站。该网站预先创建了许多聊天角色,用户可以与这些角色交流,也能自己创作角色。 2. Butterflies AI:成立仅半年的初创公司开发的人类与 AI 共存的社交软件。用户可在平台上创建具有独特个性的 AI 朋友,平台依赖公共 AI 模型及公司自有技术,目标是提升 AI 的真实感。 目前未找到专门用于公司起名的 AI 工具,但您可以利用上述具有一定创意和生成能力的 AI 平台获取相关灵感。
2024-12-13
我需要一个帮助我提升公众号文章内容的提示词
以下是一些能够帮助您提升公众号文章内容的提示词示例及相关说明: AI 生产文章的关键在于提供清晰且具指导性的提示词。若已有基本提示词,AI 能生成基础文章;若想进一步提升质量,可提供更详细、具创意的提示词,以便 AI 更好地捕捉文章的语气、风格和重点。 例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。” 这样的提示词不仅为 AI 提供了明确指导,还设定了文章的基本结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章。但最终产出的内容可能需要您进行微调,以符合预期和公众号风格。 另外,还有一个简单的提示词模板案例:Act like a SEO Professional Writer, 你是一个 SEO 专家 I need a optimized blog post, 我需要一篇优化的博客文章 you will research keywords and incorporate them naturally into the content, 你将研究关键字并将它们自然地融入内容中 in the process, you should focus on readability, relevance and proper keyword placement, 在这个过程中,你应该关注可读性、相关性和正确的关键词位置 please avoid keyword stuffing or overoptimisation 请避免关键字堆砌或过度优化 input the final result in a well structured format, 以结构良好的格式输入最终结果 here is an example: title "Top 10 Tips for Effective SEO Writing: Boost Your Content's Visibility" 这里有一个例子:标题“有效 SEO 写作的 10 大技巧:提高你的内容的知名度”完整 prompt:像一个搜索引擎优化专业作家,我需要一个优化的博客文章,你会研究关键字,并将它们自然地纳入内容,在这个过程中,你应该专注于可读性,相关性和适当的关键字放置,请避免关键字填充或过度优化,输入一个结构良好的格式的最终结果,这里是一个例子:标题“有效的搜索引擎优化写作的十大技巧:提高您的内容可见性”
2024-12-13
AI办公工具
以下是一些常见的 AI 办公工具: 豆果美食 APP:这是一个 AI 菜谱生成平台,使用自然语言处理和数据分析技术,市场规模达数亿美元。它能根据用户口味和现有食材生成个性化菜谱。 沪江开心词场:作为 AI 语言学习助手,运用自然语言处理和机器学习技术,市场规模达数十亿美元。它能辅助用户学习语言,提供个性化学习方案。 爱奇艺智能推荐:这是一个 AI 电影推荐系统,采用数据分析和机器学习技术,市场规模达数亿美元。它能根据用户喜好推荐电影。 WPS Office:作为 AI 办公自动化工具,借助自然语言处理和机器学习技术,市场规模达数十亿美元。它能提高办公效率,实现自动化办公流程。 Gamma:在线 PPT 制作网站,用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,用户输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ WPS 文档翻译功能:AI 办公文档翻译工具,运用自然语言处理技术,能快速翻译办公文档,提高工作效率。 此外,还有以下 AI 办公工具: 美丽修行 APP:AI 美容护肤产品推荐平台,通过数据分析和自然语言处理,根据用户肤质推荐适合的美容护肤产品。 360 儿童手表:AI 儿童安全监控系统,利用图像识别和机器学习技术,保障儿童安全,让家长放心。 汽车之家 APP:AI 汽车保养提醒系统,借助数据分析和机器学习,提醒车主及时进行汽车保养。
2024-12-13
微软自研的大模型是什么
微软自研的大模型包括 MAI1 大模型。MAI1 大模型由 Inflection CEO Mustafa Suleyman 负责,模型规模超过 5000 亿参数,远超微软之前的开源模型,使用 Inflection 技术和数据,但独立于原有项目 Pi。来源:https://t.co/aba77GFcnD 此外,微软还在 Microsoft Build 2024 大会上发布了包括 Phi3vision 多模态小模型等相关内容。
2024-12-13
亚马逊大语言模型全景培训
以下是关于亚马逊大语言模型全景培训的相关内容: Andrej Karpathy 亲授的大语言模型入门讲座提到: 1. 大型语言模型(LLMs):神经网络实际上是下一个词预测网络,通过给它一些单词来预测下一个单词。尽管下一个单词预测任务看似简单,但它迫使神经网络学习大量关于世界的信息,并将其编码在参数中。例如,预测关于露丝·汉德勒的内容时,模型参数需学习相关知识。模型推理是生成接下来的单词,通过采样选择单词并反馈回模型获取下一个单词,从而“梦想”出类似互联网文档的内容,如 Java 代码、亚马逊产品、维基百科文章等。 2. 获取辅助模型的方式:保持优化相同,更换训练数据集。过去对互联网文档训练,现在替换为手动收集的数据集,通过雇用人员按标签说明提问并写下答案。预训练阶段文本量大但质量低,第二阶段更看重质量而非数量,文档少但都是高质量对话。 该讲座的作者是天空之城城主,来源为 https://mp.weixin.qq.com/s/fmb4nvIEA9AC5JpNPWN7Q ,宝玉的另一翻译版本为 https://twitter.com/dotey/status/1728959646138880026 。讲座分为三大部分,包括第一部分的大型语言模型(LLMs)、第二部分的 LLM 的未来、第三部分的 LLM 安全性。Andrej Karpathy 近期进行了一场 30 分钟的入门讲座,虽未录制,但因受欢迎决定重新录制并上传至 YouTube 平台。
2024-12-13
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 小白用户可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。其关键点包括精确性、创造性、迭代、上下文理解。 提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2024-12-13