直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
ai的底层逻辑是什么
AI 的底层逻辑包括以下几个方面: 1. 决策方面:AI 在越来越多的场景落地,成为企业管理和决策的重要工具。然而,AI 的决策过程并非真正的“理解”,而是基于复杂计算和模式匹配,其本质存在局限性,是个“黑盒”,输出结果可见但决策过程难以理解,这种不透明性给企业决策带来风险。 2. 大模型方面:大模型依靠概率计算逐字接龙工作,参数规模的增加使其实现量变到质变的突破,从而“涌现”出智能。大模型的知识是通过预训练预先学习和存储的,但在没有外部帮助时,其知识信息可能不完备和滞后。 3. 神经网络方面:计算机科学家以人脑神经元细胞结构为灵感,利用概览模型在计算机上实现对人脑结构的模仿,但大模型内部如同人类大脑一样是混沌系统,即使是开发者也无法解释其微观细节。
2024-11-13
帮我看看,把同化的图片用ai绘画二次生成会自己的图片,来售卖这样的想法怎么样
将通过同化的图片用 AI 绘画二次生成的图片进行售卖这种想法是不可取的,并且可能涉及到法律风险和道德问题。 从法律角度来看,同化的图片可能存在版权归属问题,如果未经授权对其进行二次创作并售卖,可能会侵犯原作者的知识产权。 从道德层面上讲,这种行为也不符合诚实和公平的原则。 在 AI 绘画领域,应当尊重原创和知识产权,通过合法合规的方式进行创作和商业活动。
2024-11-13
QR美化型AI有哪些?
以下为一些 QR 美化型 AI 的相关信息: 在进行 QR 码美化时,进入 SD 版块需要下载两个 SD 的 ControlNET 模型和一个预处理器。您可以添加公众号【白马与少年】,回复【SD】获取打包文件。在【QR ControlNET】的文件夹中,后缀为【.yaml】的应放在“……\\sdwebuiakiv4.2\\extensions\\sdwebuicontrolnet\\models”路径下,后缀为【.safetensors】的放在“……\\sdwebuiakiv4.2\\models\\ControlNet”路径下。可以随便选择一个“cheeseDaddys ”的模型,并填入一段描绘梦幻森林的关键词,在美化过程中关键词非常重要。接着,把迭代步数设置到 15,采样选择 DPM++ 2M Karras,图像大小设置到 768768。
2024-11-13
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 主要职责包括: 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,确保清晰传达用户意图并引导模型生成满意结果。 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,以提高模型性能。 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其实现原理主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 在生成式 AI 模型中,提示词工程是一门新兴的学科,它塑造了模型的交互和输出。提示词是用户与模型沟通愿望的文本界面,可从简单问题到复杂任务,包括指令、问题、输入数据和示例等。提示词工程的核心在于制作出能实现特定目标的最佳提示词,这不仅要指导模型,还需深刻理解模型能力和局限性及所处上下文。此外,提示词工程是一个迭代和探索的过程,类似于传统软件工程实践,且需要适应新范式。本文旨在深入探讨这个新兴领域,重点关注其在 LLM 中的应用,且多数技术也适用于多模态生成式 AI 模型。
2024-11-13
论文全文生成摘要
以下是关于您问题的回答: “Chain of Density”(CoD)是一种通过建立一系列相互关联的紧密提示来指导 AI 生成具体和连续输出的方法。它由美国哥伦比亚大学、麻省理工和 Salesforce 公司的研究人员共同发表。具体来说,是使用 GPT4 生成初始的稀疏摘要,然后通过迭代加入缺失的重要内容,在不增加摘要长度的情况下,添加更多实体信息,让摘要更具细节和丰富性、可读性及抽象性。这些提示相互链接,形成一个“密度链”,更有针对性地引导 AI 达到预期的输出。论文以“如何从文章提炼萃取出最合适的摘要”为重点,发布后有网友实测将 CoD 提示法用于翻译,翻译质量有飞跃提升。 在论文写作方面,有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-12
有没有可以帮我做作品集的ai工具?
以下为您介绍一些可以帮助制作作品集的 AI 工具: 1. GPT4、WPS AI 和 chatPPT:可以用于制作 PPT 类型的作品集。例如,在制作 PPT 时,大纲内容、排版、动画等都可以借助这些工具完成。 2. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 3. Rezi:是一个受到众多用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 4. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结、技能、成就生成器和 AI 驱动的简历工作匹配。 更多相关工具,您还可以查看:https://www.waytoagi.com/category/79 。 需要注意的是,AI 工具生成的内容可能需要您进一步甄别和调整,以满足您的具体需求。
2024-11-12
ldap和ad之间是什么关系
LDAP(轻型目录访问协议)是一种用于访问和管理目录服务的开放协议。AD(Active Directory)是微软基于 LDAP 协议开发的一种目录服务。 AD 利用了 LDAP 协议的特性来实现对网络资源和用户的集中管理、认证和授权等功能。可以说 AD 是基于 LDAP 协议构建的一个具体的、功能丰富的目录服务系统。 总的来说,LDAP 是一种通用的协议,而 AD 是基于 LDAP 协议的特定实现,并针对微软的环境进行了优化和扩展。
2024-11-12
什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于 AI 的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 在实际应用中,有些任务无法明确编程让计算机完成,比如根据照片判断一个人的年龄,而这类任务正是 AI 所感兴趣的。 AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。相关的 AI 工具包括 Keep、Fiture、Fitness AI、Planfit 等。
2024-11-12
如何使用ai帮助我写作
利用 AI 帮助写作可以参考以下步骤和方法: 1. 确定写作主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成写作的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写初稿:可以利用 AI 写作工具草拟任何东西的初稿,如博客文章、论文、宣传材料、演讲、讲座等。 6. 优化内容:将文本粘贴到 AI 中,要求它改进内容,或就如何为特定受众提供更好的建议。也可以要求它以不同风格创建多个草稿,使事物更生动,或者添加例子,以激发您做得更好。 7. 帮助完成任务:AI 可以做您没有时间做的事情,像实习生一样使用它写邮件,创建销售模板,提供商业计划的下一步等。 8. 数据分析(若涉及):如果写作内容涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查写作的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保写作的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行写作时,应保持批判性思维,并确保写作的质量和学术诚信。 目前,一些较好的写作工具包括: 最佳免费选项: 付费选项:带有插件的4.0/ChatGPT 此外,GPT4 仍然是功能最强的人工智能写作工具,您可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。Claude 是紧随其后的第二名,也提供了有限的免费选项。这些工具也被直接集成到常见的办公应用程序中,如 Microsoft Office 将包括一个由 GPT 提供支持的副驾驶,Google Docs 将整合 Bard 的建议。
2024-11-12
大模型排名以及排名的评测标准维度是什么
以下是一些常见的大模型排名及评测标准维度: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb: 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 斯坦福发布的大模型排行榜 AlpacaEval: 项目链接:https://github.com/tatsulab/alpaca_eval 排行榜链接:https://tatsulab.github.io/alpaca_eval/ 该研究团队选择了目前在开源社区很火的开源模型,还有 GPT4、PaLM 2 等众多「闭源」模型,甚至还开设了一个「准中文」排行榜。 AlpacaEval 分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在斯坦福的这个 GPT4 评估榜单中: GPT4 稳居第一,胜率超过了 95%;胜率都在 80%以上的 Claude 和 ChatGPT 分别排名第二和第三,其中 Claude 以不到 3%的优势超越 ChatGPT。 值得关注的是,获得第四名的是一位排位赛新人——微软华人团队发布的 WizardLM。在所有开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco。 而在开源模型中的佼佼者 Vicuna 发挥依然稳定,凭借着超过 70%的胜率排在第六,胜率紧追 Guanaco 65B。 最近大火的 Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 的技术细节: 人类一致性:标注者与交叉标注集中人类多数票之间的一致性。 价格:每 1000 个标注的平均价格。 时间:计算 1000 个标注所需的平均时间。相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 AlpacaEval 评估模型的方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 1. 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 2. 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 3. 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
2024-11-12