直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
普通人如何入局ai
普通人入局 AI 可以参考以下方法: 1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 会给出知识框架,然后针对每一个小点进一步询问,帮助深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息。同时,注意信息渠道、质量、密度三者皆优。若担心信息洪流太大,可尝试以下做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 3. 直观初接触:对 AI 最好的直观初接触有两个方面,一是了解最低成本能直接上手试的工具以及自己能否尝试,二是了解现在最普遍/最好的工具及其效果。虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已分好类目。为了更便捷展示 AI 能力,让普通人更直观马上上手,可选择聊天工具、绘画工具、视频工具、音乐工具等进行体验。
2024-11-11
我想生成有具体建筑的图像设计,如夫子庙,而不是古风建筑,怎么表述,让AI理解
要让 AI 准确理解您想要生成具有特定建筑(如夫子庙)的图像设计,而非一般的古风建筑,您可以这样表述:“生成一幅清晰、逼真的夫子庙图像设计,展现其独特的建筑风格和细节,包括庙宇的屋顶结构、墙壁装饰、门窗样式等,要突出夫子庙的特色元素,如特定的牌匾、雕刻、飞檐等,背景可以是适当的自然景观或周边的街道场景。”
2024-11-11
你如何使语音助手掌握情感意图
要使语音助手掌握情感意图,可以从以下几个方面考虑: 1. 明确“情绪识别系统”的概念:根据欧洲议会和欧盟理事会的规定,“情绪识别系统”是指根据自然人的生物数据识别或推断其情绪或意图的人工智能系统,例如快乐、悲伤、愤怒等,但不包括身体状态如疼痛或疲劳,也不包括仅仅检测容易察觉的表情、手势或动作,除非用于识别或推断情绪。 2. 借鉴相关研究和观点:如 AI 教父 Hinton 探讨的如果助手具有自我反省的能力,可能会有感觉,以及他提出的新的感觉模型。 3. 理解情感的重要性:情感对人类具有生存、沟通、决策、动机和维系等功能。比如,人类会因适应环境做出有利生存的生理反应,不同情感表达会使相同文字语言内涵不同,大脑决策依赖情感,情感能激发和维持个体行为,也是人类社会化维系的纽带。 4. 以情感计算为目标:情感计算旨在使计算机能够识别、感知、推断和理解人类的情感,最终赋予计算机类似人的情感能力。 总之,使语音助手掌握情感意图需要综合多方面的知识和技术,不断探索和创新。
2024-11-11
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
AI训练师是什么职业
AI 训练师是一种新兴职业,其职责和工作内容因具体领域和应用场景而有所不同。 例如,在 AI 教育培训和商业应用方面,像星动 AI 联合创始人李先森所从事的工作,可能包括对学员进行 AI 相关知识和技能的培训,以及参与 AI 项目的测评和指导等。 在 AI 设计领域,AI 训练师可能需要负责 AI 风格的开发和调试工作,参与项目的整体风格和审美定义。根据产品需求完成风格渲染的研发、测试、配置和维护,熟练使用 StableDiffusion Web UI 等 AI 框架进行风格研发,负责 AI 模型(如 LoRA,Prompt/Prompt Sentence)的训练、参数调整以及性能优化,编写高质量的渲染记录文档,进行配置和模型训练质量控制,并为团队提供技术支持和指导,解决技术难题。 总之,AI 训练师需要具备相关的专业知识和技能,以帮助 AI 系统更好地学习和优化,从而实现各种应用目标。
2024-11-11
多轮对话训练中你如何训练模型掌握情感需求
在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式: 1. 利用相关数据集进行训练,例如: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| ||| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。 3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。 4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
2024-11-11
在车载语音多轮对话训练中你如何训练模型掌握情感需求
目前知识库中暂时没有关于在车载语音多轮对话训练中如何训练模型掌握情感需求的相关内容。但一般来说,要训练模型掌握情感需求,可以从以下几个方面考虑: 1. 数据收集:收集包含丰富情感表达的车载语音对话数据,包括不同情感状态下的语音样本和对应的文本描述。 2. 特征提取:从语音和文本数据中提取能够反映情感的特征,如语音的语调、语速、音量,文本中的词汇、句式、语义等。 3. 模型选择:选择适合处理情感分析任务的模型架构,如基于深度学习的循环神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)等。 4. 情感标注:对收集的数据进行准确的情感标注,以便模型学习不同情感的模式。 5. 多模态融合:结合语音和文本等多模态信息,提高情感识别的准确性。 6. 优化算法:采用合适的优化算法来训练模型,调整模型的参数,以提高模型的性能。 7. 模型评估:使用合适的评估指标来评估模型在情感需求掌握方面的性能,并根据评估结果进行调整和改进。
2024-11-11
车载语音助手
人工智能在汽车行业的应用非常广泛,以下是一些相关方面,包括车载语音助手: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现汽车自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据,预测潜在故障和维护需求,减少停机和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定策略和优化定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,用 AI 优化路线规划、车辆调度和定价策略。 9. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 此外,SoundHound AI 与 Perplexity 合作将在线智能问答功能引入汽车的语音助手,可查询油价、电影演员阵容等信息。详细内容:https://xiaohu.ai/p/7737
2024-11-11
小白学Ai的学习路径
以下是为小白提供的学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-11
cursor如何使用
Cursor 的使用方法如下: 访问第三方文档:Cursor 附带一组已爬取、索引并准备好用作上下文的第三方文档,可使用@Docs 符号访问。 添加自定义文档:若要对尚未提供的自定义文档进行爬网和索引,可通过@Docs > Add new doc 实现。粘贴所需文档的 URL 后将显示相应模式,之后 Cursor 会索引并学习该文档,您就能像使用其他文档一样将其用作上下文。 管理自定义文档:在 Cursor Settings > Features > Docs 下,您可以看到已添加的文档,并进行编辑、删除或添加新文档的操作。 此外,关于 Cursor 的 Apply 功能: 了解构建:可在中阅读更多关于如何构建即时申请的信息。 应用代码块:要应用代码块建议,可按每个聊天代码块右上角的播放按钮。这会编辑您的文件以合并 Chat 生成的代码。对于更复杂的 AI 驱动的代码更改,建议使用 Chat + Apply。 接受或拒绝更改:应用代码块后,可浏览差异并接受或拒绝更改,也可点击聊天代码块右上角的“接受”或“拒绝”按钮,或使用 Ctrl/⌘ Enter 键接受,Ctrl/⌘ Backspace 键拒绝。
2024-11-11