直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
AI编程
以下是关于 AI 编程的全面介绍: 一、基础编程知识 如果希望在 AI 编程方面深入学习,最好体系化地了解以下内容: 1. Python 基础 基本语法:包括变量命名、缩进等规则。 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 控制流:使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 2. 函数 定义和调用函数。 理解函数的参数和返回值。 掌握作用域和命名空间,了解局部变量和全局变量的概念及工作方式。 3. 模块和包 学会导入 Python 标准库中的模块或第三方库。 了解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP) 熟悉类和对象的定义及实例化。 为类定义属性和方法,并通过对象调用。 理解类之间的继承关系和多态的实现。 5. 异常处理 明白什么是异常以及其工作原理。 学会使用 try 和 except 语句处理程序中的错误。 6. 文件操作 掌握文件的读写操作。 处理文件路径,列举目录下的文件。 二、AI 编程的实践案例 在 AI 的帮助下,即使不会写代码,也能在短时间内完成很多工作: 1. 一个月内完成的项目 IAiUse Language Translator Settings:Obsidian 插件,帮助翻译文章为多国语言,耗时 1 天。 i18n Nexus:vs code 插件,只要维护一个国家语言,自动把网站翻译成多国语言,耗时 3 天。 scriptcraft:剧本创作平台的界面,耗时 1.5 天。 lumier:宣传页(50 页,600 张图),耗时 3 天。 waytoagi 官网多语言:增加多语言支持,修改近 100 个文件,耗时 5 天。 文生视图:支持 MacOS、Windows、Linux 的跨平台文生视图一站式平台,耗时 3 天。 其它:还有一些 chrome 的插件。 三、编程的本质 编程的核心是解决问题的能力,AI 辅助编程正在颠覆传统编程方式: 1. 问题分解能力:将复杂问题拆解成小的、可管理的部分。 2. 逻辑思维:清晰地表达需求和思路。 3. 创意表达:提出创新的解决方案。 例如在多语言翻译插件的开发中,首先仔细分析问题,包括真正的需求、现有系统的不足以及用户的使用场景,然后与 AI 工具交流描述问题场景和解决思路,最终获得令人惊喜的结果,AI 不仅提供核心代码,还给出了封装成插件、优化用户界面和错误处理等方面的建议。
2024-11-09
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点: 如同在太暗环境拍照产生的颗粒状噪点,Stable Diffusion 用于生成艺术作品时会在幕后“清理”图像,它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界的样子和书面语言,并以此指导噪点消除过程。例如,给它一幅以 H.R. Giger 风格描绘的外星人弹吉他的画,它能像熟练的平面艺术家一样进行清理。 大多数艺术生成工具中有“推理步骤”滑块,稳定扩散是逐步去除噪点的。 起始运作方式:为生成艺术,给稳定扩散提供纯噪点的初始图像,它基于统计数据估计所有选项的概率,即使正确概率极低,仍会选择概率最高的路径。例如,它对吉他在图像中的位置有一定理解,会寻找噪点中最可能像吉他边缘的部分进行填充,且每次给不同的纯噪点图像都会创作出不同作品。 相关组件和模型: UNET 是从噪音中生成图像的主要组件,在预测过程中通过反复调用 UNET,将其预测输出的 noise slice 从原有的噪声中去除,得到逐步去噪后的图像表示。Stable Diffusion Model 的 UNET 包含约 860M 的参数,以 float32 的精度编码大概需要 3.4G 的存储空间。 CLIP 将用户输入的 Prompt 文本转化成 text embedding,UNET 进行迭代降噪,在文本引导下进行多轮预测。 传统扩散模型在处理大尺寸图像和大量扩散步骤时存在计算效率问题,稳定扩散(最初称为潜在扩散模型)是为解决此问题提出的新方法。 存放路径和模型实例: ComfyUI 存放路径:models/checkpoints/SD 基础预训练模型,包括 SD1.5、SDXL 以及 SD 微调模型。 模型实例有【majicMIX realistic 麦橘写实 V7】(sd1.5 微调)、【LEOSAM HelloWorld 新世界】(SDXL 微调)等。 训练方法:DreamBooth(by Google) 格式:EMAonly & pruned 只画图,Full 可画图和微调训练。
2024-11-09
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:暂未提及。
2024-11-09
怎么系统学习ai
以下是系统学习 AI 的方法: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,以及百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台,体验 AI 的应用场景。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考其对未来社会的影响。 对于新手: 1. 了解 AI 基本概念:阅读「」,熟悉术语和基础概念,包括主要分支及联系,浏览入门文章。 2. 开始 AI 学习之旅:在「」中找到初学者课程,推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品创作作品,并在知识库分享。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。 此外,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并可能成为下一代专家(无论是人类还是 AI)的教师。
2024-11-09
用Coze创建AI,打造自己的图像生成AI机器人
以下是使用 Coze 创建自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号: 访问 Coze 官网,可选择中文版(https://www.coze.cn/,支持大模型:kimi、云雀)或英文版(https://coze.com/,支持大模型:chatgpt4)进行快速注册。 产品定位为新一代 AI 原生应用开发服务平台。 2. 创建机器人: 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,起一个响亮的名字。 工作空间选“个人空间”。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”用文字描述想要的图标,满意后再把“Bot 名称”改为简洁版名称。 3. 具体创建 AI Bot: 首先打开扣子的首页(https://www.coze.cn/home),直接点击左上角的创建 AI Bot 按钮。 直接在弹窗输入 Bot 的相关信息,完成创建后细化其功能。 设计人设与回复逻辑,根据功能需求设计提示词。 调整模型设置,比如基于聊天为主的需求,将对话轮数记录改为 20 轮。 选择插件,如英文名言警句(get_one_eng_word & get_many_eng_words)随机获取英语名言,Simple OCR(ocr)识别图片中的文字。 设置开场白和预置问题,预置问题有参考价值。 最后设置语音,若为英语陪练 AI Bot,选择亲切的英语音色。
2024-11-09
用 Coze 免费打造自己的图像生成 AI 机器人
以下是用 Coze 免费打造自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号 访问 Coze 官网,快速注册,开启智能之旅。 Coze 中文名扣子,字节跳动出品。 中文版:https://www.coze.cn/(支持大模型:kimi、云雀)——本次教程使用中文版 Coze。 英文版:https://coze.com/(支持大模型:chatgpt4) 产品定位:新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 2. 创建你的机器人 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。 登录页面、首页、创建 Bot 时,工作空间选“个人空间”即可。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述你想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。 此外,在实际体验中: 测试 AI Bot 时,可能会出现回答不完整的情况,如部分信息未给出,这是因为 Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定。但官方会尽快解决。 成功的回答是根据提示词和插件+工作流的组合,结果非常详细。若加上自己的知识库甚至定制化使用数据库功能,AI Bot 的使用场景会更丰富。 国外版有免费的 GPT4 大模型使用,插件和工作流功能更丰富稳定,还有更多自定义插件和工作流功能,能更灵活定制 AI Bot。 作者演示上述步骤后发布的 AI Bot,其 ID 是:7333630516673167394,有兴趣可在 Coze 平台上搜索这个 ID 来体验。
2024-11-09
用Coze创建AI,能够通过文字生成图片或者视频或者动画或者渲染效果
以下是使用 Coze 创建 AI 的相关信息: 1. 注册 Coze 账号: 访问 Coze 官网,快速注册,开启智能之旅。 Coze 中文名扣子,字节跳动出品。 中文版:https://www.coze.cn/(支持大模型:kimi、云雀)——本次教程使用中文版 Coze。 英文版:https://coze.com/(支持大模型:chatgpt4)。 产品定位:新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 2. 创建机器人: 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。 工作空间选“个人空间”即可。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。 3. 制定任务的关键方法: 在开始设计和开发任何 AI Agent 之前,最关键的第一步是明确定义期望 AI 最终输出的结果。这包括详细描述期望获得的输出内容,如输出是文本、图像、音频还是其他形式的数据,输出的具体格式和结构是什么,确定输出内容的质量标准。 预估任务的可行性。 确定任务的执行形式。以 LearnAndRecord 的一篇文章为例,拆解其结构,基于此进行微调优化。值得注意的是,Coze 支持 Markdown 格式输出 AI 生成的内容,Markdown 作为轻量级文本标记语言,能够有效展示文本、图片、URL 链接和表格等多种内容形式。参照精读结构,评估任务的可行性,生成结果包括文字、图片(思维导图)、音频(原文音频)三类输出格式,前两者可直接用 Markdown 输出/嵌入,音频则需通过 URL 链接跳转外部网页收听。最后结合使用习惯,期望在输入一篇英文原文时,AI Agent 能够按模板要求,直接输出精读结果。
2024-11-09
Ai技术现在的发展状况
AI 技术的发展状况如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 需要注意的是,无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-11-09
AI技术发展状态
AI 技术的发展状态如下: 发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 对于新手学习 AI,建议: 持续学习和跟进:AI 是快速发展的领域,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 使用 AI 做事时需要注意: AI 是一种工具,并不总是正确的工具。要考虑其弱点,仔细思考是否适合计划应用的目的。 要了解许多道德问题。AI 可能被用于侵犯版权、作弊、窃取他人工作或操纵。特定 AI 模型的构建方式以及谁从其使用中受益,通常是复杂且不特别清楚的问题。最终,使用者有责任以道德的方式使用这些工具。
2024-11-09
利用AI自动查阅飞书知识库信息
以下是关于利用 AI 自动查阅飞书知识库信息的相关内容: 关于我: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成任务。 使用方法: 1. 您可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码请在获取),然后点击加入,直接@机器人即可。 2. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 在飞书群中的使用: 在飞书 5000 人大群里,内置了智能机器人「waytoAGI 知识库智能问答」,它基于飞书 aily 搭建。您只需在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 飞书群智能机器人的功能: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人: 2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着讨论了利用 AI 技术帮助用户检索知识库内容,引入 RAG 技术,通过机器人来帮助用户快速检索。然后介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可快速给大模型补充新鲜知识,提供大量新内容。之后讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后介绍了企业级 agent 方面的实践。
2024-11-09