直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
有没有输入歌曲,自动生成mv的
目前存在输入歌曲自动生成 MV 的相关方法和案例: 大峰的案例中,先使用 Suno 生成歌曲,选择中国风风格,凭借音乐审美选出中意的歌曲。然后将歌词发给 GPT,让其以英文 AI 绘画提示词的形式提供每句歌词的每个分镜,再将生成的图片丢入 Midjourney 进行图片生成,最后用 Midjourney 生成的图片丢入 Runway 进行图生视频。 专业的歌曲分析师可以根据用户输入的歌词完成基本的歌曲 MV 构思部分。 在爆肝 60 小时的案例中,音乐制作方面一开始想抽三个不同的曲子拼接,但因节拍、风格、情绪不同难以剪辑,最后用了一首完整的曲子。团队成员上传推荐歌曲到多维表格,附上推荐理由,由相关人员审核通过。还有一些技巧,如在前奏部分重复第一句以解决发音不清晰问题。
2024-11-06
如何学会ollma dify
以下是关于学习 Ollama 的详细步骤: 1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。 2. 安装 Ollama : 官方下载地址:https://ollama.com/download 。 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。 3. 启动 Ollama : 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 5. 使用 Ollama 运行本地大模型: 安装完成 ollama 后,在命令行中运行相应命令。 可通过查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
2024-11-06
AI做数据分析的能力怎么样
AI 在数据分析方面具有一定的能力和优势: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式支持多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图的随意切换。 提升认知能力:大脑需要不断学习和训练,认清“思维陷阱”,如确认偏误、锚定效应等,锻炼逻辑思维,掌握数据分析能力,避免被误导。 对于 AI PM 来说:掌握算法知识具有必要性,包括理解产品核心技术、与技术团队有效沟通、评估技术可行性、把握产品发展方向、提升产品竞争力以及提升数据分析能力。 总之,AI 在数据分析领域有其独特的价值和应用场景,但也需要结合人类的专业知识和判断来确保分析结果的准确性和可靠性。
2024-11-06
本地安装大模型使用4060显卡和4060TI显卡有什么区别
在本地安装大模型时,4060 显卡和 4060TI 显卡主要有以下区别: 显存方面:显存是选择显卡的重要因素。4060 显卡的显存通常小于 4060TI 显卡。对于一些对显存要求较高的任务,如生成更大分辨率的超清图片、使用更高的参数进行 Dream booth 微调等,4060TI 显卡的大显存更具优势。 生成速度方面:4060TI 显卡的速度比 4060 显卡快。但在某些情况下,如果显存不足导致无法执行任务,速度稍慢就显得不那么重要了。 总体而言,在预算允许的情况下,16GB 的 4060TI 显卡由于其较大的显存,可以执行更多样的 AI 生成任务。但如果预算有限,4060 显卡也是一个可行的选择。
2024-11-06
如何理解ai的历史
人工智能的历史始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽先进但仍遵循相同理念。但有些任务如根据照片判断人的年龄,无法明确编程,这类任务正是人工智能感兴趣的。 您还可以思考如果人工智能实现,金融、医学和艺术等领域哪些任务可交给计算机完成,以及这些领域如何从中受益。
2024-11-06
Function Calling in AI
以下是关于“Function Calling in AI”的相关内容: 函数调用为 AI 系统带来了诸多重要优势,包括简化用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能够处理如酒店预订或制定旅行计划等复杂操作,用户通过简单的语音命令就能完成一系列复杂任务,重新定义了人与技术的互动方式。 在 ChatGPT 中,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能地选择输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。结合函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质上是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择工具、构建必要的结构化 JSON 输入并触发 API 执行以产生最终操作。例如 Omni 的“计算 AI”功能,利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。
2024-11-06
我该如何让ai生成一篇教学设计
以下是一些让 AI 生成教学设计的方法: 1. 对于教师,可以利用如沃顿商学院提供的提示词库。首先,AI 作为教学助理向老师介绍自己并询问教学科目及学生层次,等待回复。然后请老师上传教学大纲(若有)或详细描述课程内容,再根据老师的反馈提供针对性帮助。 2. 对于教育工作者,可尝试以下方式: AI 辅助教案设计:使用 AI 帮助设计课程大纲或生成教学材料的想法。 个性化学习路径:利用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单课程模块,教导学生了解 AI 基础知识、应用领域及对社会的影响。 3. 教师可根据不同教学场景设计恰当的提示词,用生成式人工智能辅助教学,例如收集整理语料,不断迭代和更新提示词以提升效果。还可以利用 AI 进行搜索总结、制作思维导图、PPT 制作、论文润色、专业翻译、摘要重点提取、会议纪要撰写、公文撰写等。
2024-11-06
AI应用的行业
以下是 AI 的一些主要应用行业: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗,分析患者数据制定个性化治疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,帮助投资者做出投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 根据市场需求动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,进行预测性维护,避免停机。 检测产品缺陷,把控质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他应用场景: 教育领域,提供个性化学习体验。 农业方面,分析农田数据提高农作物产量和质量。 娱乐行业,开发虚拟现实和增强现实体验。 能源领域,优化能源使用,提高能源效率。 需要注意的是,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。以上内容由 AI 大模型生成,请仔细甄别。
2024-11-06
开源数字人
以下是关于开源数字人的相关信息: 组合方案: 1. 先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits()克隆声音,做出文案的音频。 2. 使用 wav2lip 整合包,导入视频和音频,对口型得到视频。基础 wav2lip+高清修复整合包下载地址:https://github.com/Rudrabha/Wav2Lip 。这就是目前的本地跑数字人的方案,效果都差不多,都是用的 wav2lip 。产品:https://synclabs.so/ 构建高质量的 AI 数字人: 1. 构建数字人躯壳:建好的模型可以使用 web 前端页面(Live2D 就提供了 web 端的 SDK)或者 Native 的可执行程序进行部署,最后呈现在用户面前的是一个 GUI 。笔者的开源数字人项目(项目地址:https://github.com/wanh/awesomedigitalhumanlive2d)选择了 live2d 作为数字人躯壳,因为这类 SDK 的驱动方式相比现在的 AI 生成式的方式更加可控和自然,相比虚幻引擎这些驱动方式又更加轻量和简单;另外超写实的数字人风格在目前的技术能力下,处理不好一致性问题,容易带来虚假的感觉或者产生恐怖谷效应,而卡通二次元的形象给人的接受度更高。关于 live2d 的 SDK 驱动方式可以参考官方示例:https://github.com/Live2D 。 相关算法开源代码: 1. ASR 语音识别: openai 的 whisper: https://github.com/openai/whisper wenet: https://github.com/wenete2e/wenet speech_recognition(这是一个语音识别的接口集合,里面有不同实现的语音识别的接口): https://github.com/Uberi/speech_recognition 2. AI Agent: 大模型部分:包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等等。 Agent 部分:可以使用 LangChain 的模块去做自定义,里面基本包含了 Agent 实现的几个组件 3. TTS: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc: https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 除了算法,人物建模模型可以通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型)实现,这样就完成了一个最简单的数字人。当然这种简单的构建方式还存在很多的问题,例如: 1. 如何生成指定人物的声音? 2. TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作? 3. 数字人如何使用知识库,做出某个领域的专业性回答?
2024-11-06
国内关于问答最好的AI
以下是国内一些在问答方面表现较好的 AI: 出门问问:是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家和地区提供 AI 智能硬件、AI 政企服务,以及面向创作者的 AIGC 工具。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,成为全球 AI CoPilot 的引领者。 跃问:原生聊天机器人,在国内 A2409 月度榜单中排名靠前。 智能口语大师:原生教育类产品。 AI 写作猿:原生写作软件。 AI 外教:原生教育类产品。 造梦次元:原生情感陪伴产品。 AI 写作专家:原生写作软件。 必剪:功能为视频编辑。 AI 写作助手:原生写作软件。 AI Mate:原生图片生成产品。 通义千问:最大亮点是强大的推理能力,在国内推理评测中表现出色,能处理复杂任务和逻辑推理,在科研、商业分析等领域有应用前景,允许用户创建自定义智能体,但在语义理解方面略显逊色。
2024-11-06