直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
给孩子看的AI课程
以下是为您提供的适合孩子的 AI 课程相关信息: 1. 对于三年级的孩子,有一套 60 分钟的课程设计,课程分为四个部分: 什么是 AI? AI 的发展历程和重大突破 玩转 AI——今日应用探索 Q&A 2. 对于 4 岁儿童练习英语口语,有以下一些受欢迎的 AI 工具: :使用游戏和互动活动教英语,提供各种课程,有家长仪表板可跟踪孩子进度和设置学习目标。 :提供英语和其他多种语言课程,使用多种教学方法,有社区功能可与其他孩子练习口语。 :使用抽认卡和游戏教英语,提供各种课程,有社交功能可与朋友和家人一起学习。 :使用沉浸式方法教英语,有语音识别功能帮助练习发音。 :免费,使用游戏化方法让学习有趣,提供多种课程保持孩子参与度。 为孩子选择时,要考虑年龄、兴趣、学习风格、应用程序的功能和成本等因素。 3. 还有在筑桥实验小学科学节上的超受欢迎的离谱村 AI 课,给 1 2 年级的活动是用 AI 创作离谱生物,给 3 5 年级的活动是在体验 AI 创造的同时加上自然科学部分——设计满足栖息地特别生存挑战的离谱生物。但自然科学部分对 3 年级孩子有难度,他们更适合参加低年级场。
2024-10-22
如何用大模型做销量预测
用大模型做销量预测可以从以下几个方面考虑: 1. 数据收集:销量预测需要大量相关数据,包括历史销售数据、市场趋势、经济指标、消费者行为等。 2. 模型选择:选择适合的大模型,例如基于深度学习的神经网络模型。 3. 特征工程:对收集到的数据进行处理和特征提取,以便模型能够更好地理解和学习。 4. 训练与优化:使用合适的算法和技术对模型进行训练,并不断优化模型参数以提高预测准确性。 5. 考虑国情和政策:不同国家和地区的国情和政策会对销售情况产生影响,模型应进行相应的优化和调整。 6. 可解释性:追求模型的可解释性,以便更好地理解预测结果和做出决策。 关于大模型相关的模型下载和安装: 1. 模型下载: Civitai(C 站):https://civitai.com/ ,可通过点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等,还可通过点击左上角“Images”查看他人已做好的图片并获取相关模型。 2. 模型安装: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。
2024-10-22
根据单据照片生成统计表,多张照片
很抱歉,目前没有关于根据多张单据照片生成统计表的具体内容和方法。但您可以考虑使用以下几种可能的途径来实现这一目标: 1. 利用专门的图像识别软件或服务,这些工具通常能够对照片中的文字和数据进行识别和提取。 2. 借助一些具有 OCR(光学字符识别)功能的办公软件,将照片中的信息转换为可编辑的文本,然后再整理成统计表。 3. 如果照片中的数据格式较为规范,也可以通过编程的方式,使用相关的图像处理和数据提取库来实现自动化处理。 您可以根据实际情况选择适合您的方法。
2024-10-22
通过拍照识别多张单据,并且根据单据内容生成统计表
很抱歉,目前知识库中没有关于通过拍照识别多张单据并根据单据内容生成统计表的相关内容。但一般来说,要实现这个需求,可能需要以下步骤: 1. 选择适合的图像识别技术和工具,例如使用深度学习框架训练专门的图像识别模型,或者利用现有的成熟的图像识别服务。 2. 对拍摄的单据图像进行预处理,包括图像增强、裁剪、矫正等操作,以提高识别的准确性。 3. 设计有效的单据内容提取算法,准确提取出关键信息。 4. 将提取的信息进行整理和分类,按照统计需求进行数据汇总和计算。 5. 选择合适的方式展示生成的统计表,如表格、图表等。 这是一个较为复杂的任务,可能需要综合运用图像处理、机器学习和数据处理等多方面的知识和技术。
2024-10-22
AI视频制作教程
以下是使用 AI 把小说制作成视频的教程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,关于使用 Stable Diffusion 制作中文文字的教程: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词,Cream + Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 5. 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:29 60。 同时,为您提供以下相关的 AI 视频工作流教程链接: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2024-10-22
苹果手机怎么使用chatgpt
以下是苹果手机使用 ChatGPT 的步骤: 1. 在 Apple Store 下载 ChatGPT :中国区正常下载不了,需要切换到美区才可以下载。美区 Apple ID 注册教程可参考知乎链接: 。最终在 Apple Store 搜到 ChatGPT 结果后下载安装,注意别下错。 2. 支付宝购买苹果礼品卡并充值,用于订阅付费 App :打开支付宝,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store & iTunes US】礼品卡,按需要的金额购买即可,建议先买 20 刀。具体操作包括: 支付宝购买礼品卡。 在 apple store 中兑换礼品卡。 在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 3. 使用 ChatGPT : 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机?”图标,选择一个声音,就可以体验流畅的语音对话。
2024-10-22
我想从0学习ai
以下是为新手提供的从 0 学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-10-22
生成式AI
生成式 AI 是一种全新的信息获取方式,能够生成新的、未曾存在的内容,包括文本、图像、音频、视频等多模态。其核心机制可拆解为数据、映射和扩散三个简单的词汇。 首先是数据,包括从公共数据库获取图像存档、历史文献图片,或创建特定数据集以覆盖特定风格或元素,目的是获得足够基础以特征化物体、风格或概念。 其次是映射,在数据处理阶段,AI 使用如卷积神经网络的算法,识别和提取图片中的关键视觉特征,如颜色、形状、纹理等,并将信息进行蒸馏,抛弃干扰部分呈现特征。 最后是扩散,利用学习到的数据和视觉特征,AI 能够通过创造性扩散的过程,在现有数据基础上探索和创造新的视觉表达形式。 生成式 AI 的应用场景广泛,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段和应用阶段。训练阶段通过从大量现有内容中学习生成基础模型,应用阶段基础模型可用于生成内容和解决一般性问题,还可使用特定领域新数据集进一步训练以解决特定问题。 生成式 AI 正式称呼为 Gen AI/Generative AI,它是一种能够生成新内容的人工智能技术,如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,是 Generative AI 的应用结果。 ChatGPT 是一种依赖 GPT 系列模型运转的应用(服务),早期 OpenAI 推出的 ChatGPT 是一种模型,目前逐渐演变成可兼容多种 GPT 模型的聊天应用。 在 Google Cloud 中,有 Vertex AI 端到端机器学习开发平台,Generative AI Studio 工具允许开发人员快速制作原型和自定义生成式 AI 模型,还有 Model Garden 平台可发现和交互基础及第三方开源模型,并提供 MLOps 工具用于自动化机器学习管道。
2024-10-22
如何学习提示词
学习提示词可以参考以下方法: 1. 学习基本概念 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,还需注意: 1. 理解提示词的作用 提示词向模型提供了上下文和指示,其质量直接影响模型输出的质量。 2. 学习提示词的构建技巧 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”、“总结”、“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例 研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具 目前已有一些提示工程工具可供使用。 6. 跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 提示词学习可以分为五个维度,从高到低依次是:思维框架,方法论,语句,工具和场景。舒适的学习顺序应当是反过来的: 1. 场景 不管那些艰深的理论和学术的东西,直接切入提示词的场景去学,比如在什么场景下,可以如何使用提示词,用特定提示词以及不用它们的效果对比。 2. 工具 然后去使用一些现成的、方便的提示词工具,包括一些 Meta Prompt、一些 AI 角色定制等,也包括别人写好的成型的提示词,作为工具来体验和尝试。 3. 有效语句 接下来要学的才是有效的提示语句,这包括大量的经典论文中明确提出的提示词语句。 4. 方法论 第四个维度是学习有效的方法论,把有效语句及其背后的原理整合成比较稳定可控的一整套的方法,可以去自动编写一些稳定的提示词。
2024-10-21
boosting 模型是什么意思
Boosting 模型是一种集成学习方法,主要包括以下两种常见类型: 1. Bagging(Bootstrap Aggregating):通过多次有放回抽样生成多个数据集,训练多个相同类型的模型(如决策树、多项式等),对于回归任务将多个模型的预测结果取平均,对于分类任务通过多数投票来决定最终的分类结果,以减少机器学习模型的方差,提高泛化能力。其核心步骤包括从原始数据集中有放回地抽取多个子集,每个子集用于训练一个独立的模型,最后集成这些模型的结果。 2. AdaBoost(Adaptive Boosting):主要用于分类问题,也可用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器的准确率仅略高于随机猜测,例如在二分类问题中可能略高于 50%。在 AdaBoost 中,强学习器通常是具有高准确率、能很好泛化到新数据的复杂模型,如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。 此外,在 Coze 上,GLM 模型和 MoonShot 模型因对结构化提示词的良好理解适合处理精确输入和输出任务,豆包系列模型在角色扮演和工具调用方面表现出色,将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2024-10-21