直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
DeepSeek应用场景
DeepSeek 的应用场景包括: 1. 智能对话:能够进行自然流畅的对话交流。 2. 文本生成:生成各种类型的文本内容。 3. 语义理解:准确理解文本的语义。 4. 计算推理:进行相关的计算和推理。 5. 在实际场景中的应用,如工作、学习、生活和社交等方面,帮助解决各种问题。 在实际使用中,DeepSeek 在文字能力方面表现突出,尤其在中文场景中符合日常写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT(据用户反馈)。
2025-02-26
如何部署本地NOTION AI工具
部署本地 NOTION AI 工具需要考虑以下几个方面: 1. 开始方式: 本地部署:如果您的电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度非常慢,因此不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 配台电脑:非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 2. 平台选择: 线上平台:出图速度快,不吃本地显卡的配置,且无需自己下载动辄几个 G 的模型,还能看其他创作者的制作的涩图,但为了节约算力成本他们只支持出最高 1024X1024 左右的图,制作横板、高清等图片就会受限。 线下部署:可以自己添加插件,不卡算力,出图质量高于线上平台,但是使用期间电脑基本处于宕机状态,如果配置不高的话还会出现生成半天之后爆显存的情况,导致出图失败。 3. 具体部署步骤(以接入微信为例): 下边将出现代码,复制的时候,注意复制全。 代码我已经分好步骤,每次只需要粘贴一行,然后点击一次回车。 回车后,只有最左边显示中括号对话前缀时,不要操作。 如果发现 ctrl+v 粘贴不进去,试试 shift+ctrl+v 粘贴。 点击菜单中,下边的“终端”,然后开始把代码粘贴进入。 第一步:cd/root||exit 1 第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(如果这里有了卡点,进行不下去,可能是因为服务器网络问题,去拉取的时候下载不全,可以复制网址,手动去下载到电脑上。然后进入文件夹,找到 root 文件夹,把下载的文件上传进去就好了。) 2.2、再粘贴下方代码,出现下图,就代表在执行中了。 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 第六步:执行完成后。刷新一下,重新进入终端,您会看到,最左侧出现了(AI)的字符。如果出现了,那么恭喜您。 第七步:继续,一行一行依次粘贴,依次回车。
2025-02-26
SVM与前馈神经网络的区别是什么
SVM(支持向量机)和前馈神经网络在以下方面存在区别: 数据处理方式:SVM 主要基于特征工程,而前馈神经网络可以自动从大量数据中学习特征。 模型结构:SVM 是一种线性分类器的扩展,具有相对简单的结构;前馈神经网络具有更复杂的多层结构。 应用场景:在图像识别、语音识别、语音合成、机器翻译等领域,早期常使用 SVM 结合特征工程,而现在神经网络逐渐占据主导地位。例如,图像识别中,早期由特征工程和少量机器学习(如 SVM)组成,后来通过使用更大数据集和在卷积神经网络结构空间中搜索,发现了更强大的视觉特征;语音识别中,以前涉及大量预处理和传统模型,现在几乎只需要神经网络;语音合成中,历史上采用各种拼接技术,现在 SOTA 类型的大型卷积网络可直接产生原始音频信号输出;机器翻译中,之前常采用基于短语的统计方法,而神经网络正迅速占领统治地位。
2025-02-26
MoE
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下步骤: 1. 定义专家网络:首先定义多个专家网络,每个专家网络负责处理特定的任务或数据集,这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。
2025-02-26
文章风格提示词逆向工程
文章风格提示词逆向工程是指通过分析和检查现有文章,了解其设计和创作方式,从而生成更优提示词的过程。 利用 ChatGPT 进行逆向工程的步骤包括: 1. 利用 ChatGPT 对指定文章进行改写。 2. 对改写后的版本进行原创性检验。 3. 根据检验结果,指导 ChatGPT 进行进一步优化。 4. 重复上述过程,直至满足高度原创的标准。 5. 采用逆向工程的方法,梳理 ChatGPT 的改写策略。 6. 整合这些策略,形成一套提高文章原创性的高效提示词。 在进行逆向提示词工程时,需要注意以下几点: 1. 检测原创度的大多是机器,不能仅凭肉眼判断改写效果。 2. 对相同提示词多次改写或从元提示词中挑选部分深入改写,可有效提升文章质量。 3. 逆向提示词要提炼文章的语气、写作风格、用词、句式等各种写作要素,包括修辞手法、文章布局、论点和证据、段落长度和句子节奏等多个维度。 4. 不同领域的逆向分析需要相应的专业知识,如文学作品和编程领域。 这种逆向工程方法在营销、商业分析、心理学等领域均适用,能够在智能写作等领域持续产生可商用的提示词。但也需注意,掌握逆向分析技术可能导致一些 AI 创业公司被替代。
2025-02-25
ai如何做儿童绘本
以下是关于如何用 AI 做儿童绘本的相关信息: 有专门的 AI 生成儿童绘本和多媒体故事平台,支持从构思、插画制作到配音发布的一体化创作流程。 该平台提供 100 多种模板和 60 多种绘画风格,可定制故事板和角色设计。 免费用户仅能生成 5 页内容,付费后可提升质量和生成速度。相关链接: 另外,儿童绘本是 AI 比较火的一个赛道,因为儿童生活在相对简单化的世界,还未成长到面对真实复杂世界的地步。
2025-02-25
用机器人一起直播会爆火吗
之前有过相关观点的文章《 。“人何以为人”是关注 AI 的教育届朋友们频频探讨的话题,今晚一起聊 AI 的教育创新,预计会碰撞出不少火花。但关于用机器人一起直播是否会爆火,目前无法给出确切的结论,其效果可能受到多种因素的影响,如直播内容的质量、机器人的表现、观众的兴趣和需求等。
2025-02-25
文生图的网站
以下是一些文生图的网站和相关信息: Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生图网站可以查看:https://www.waytoagi.com/category/38 。 此外,Stability AI 推出了基于 Discord 的媒体生成和编辑工具,文生图使用方法如下: 1. 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 2. 进入 ARTISAN 频道,任意选择一个频道。 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。 输入/dream 提示词,这部分和 MJ 类似。 和 MJ 手工输入参数不同,可选参数有五类: prompt(提示词):正常文字输入,必填项。 negative_prompt(负面提示词):填写负面提示词,选填项。 seed(种子值):可以自己填,选填项。 aspect(长宽比):选填项。 model(模型选择):SD3,Core 两种可选,选填项。 Images(张数):1 4 张,选填项。 完成后选择其中一张。 在 Stable Diffusion 中获取大佬咒语的方法:把照片导进去,它就能识别出来这张照片用到的咒语或者关键词。第一个是“PNG 图片信息”,把照片导进去,右边会自动弹出照片的信息,包括正面关键词、负面关键词,还有其他种子、大模型等信息。我们可以复制这一大串信息,来到“文生图”的页面,把全部信息粘贴到关键词的文本框中,然后点击“生成”按钮下面的第一个小按钮,SD 就会自动帮你把信息分配到合适的地方,用上一样的效果和模型。但有时导入照片后右边没有照片生成的信息,说明这张照片不是直接从 SD 下载下来的 PNG 格式的照片,此时可以用“标签器(Tagger)”来帮助生成照片的关键词。
2025-02-25
请推荐视频清晰度修复的AI网站
以下为您推荐一些视频清晰度修复的 AI 网站: 1. https://www.topazlabs.com/topazvideoai :Topaz Video AI 是一款用于消除视频抖动和运动模糊的插件,可提升画质、帧率等。解压对应文件后,右键管理员运行 VideoAIportable.exe 文件,导入处理好的视频进行操作。预设部分有放大视频、提升画质等功能,稳定 AI 模式分为自动裁切和完整帧,强度在 60 左右为宜。 2. Kraken.io :主要用于图像压缩,但也提供免费的图像放大功能,能保证图像细节清晰度。 3. Deep Art Effects :强大的艺术效果编辑器,通过 AI 技术能将图像放大并赋予艺术效果,支持多种滤镜和风格。 4. https://replicate.com/nightmareai/realesrgan :基于 RealESRGAN 的图像超分辨率增强模型,可选人脸修复和调节放大倍数,但使用几次后收费。 此外,还可以通过以下方式进行视频清晰度修复: 使用 Photoshop Generative AI 功能,主要工具包括 Remove tool、Clone brush、Generative fill 以及 Neural filters。链接:https://x.com/xiaohuggg/status/1692751080973828468?s=46&t=F6BXooLyAyfvHbvr7Vw2g SD 图生图,重绘幅度小一点。 另外,新的视频修复与超分辨率工具具有画面缺失修补、模糊去除、清晰度提升(最高 4 倍超分辨率)等功能,同时支持去模糊、修复、超分任务,操作简便,仅需一张 13G 显存 GPU。项目地址:https://visionxl.github.io
2025-02-25
视频清晰度修复
以下是关于视频清晰度修复的相关信息: Tusiart 简易上手教程中提到: 高清修复:在本来设置的图像分辨率基础上,让图像分辨率变得更加精细,相当于两次绘图流程,第一次绘图出内容,第二次绘图添加画面精细。 高清修复采样次数:和前面采样次数一样理解。 重绘幅度:相当于图生图的重绘,在原有的内容上,如果重绘幅度不是 0,会在变得高清的同时有一部分内容变动,用户看不到中间过程。 ADetailer 是面部修复插件,属于高阶技能。 XiaoHu.AI 日报 12 月 8 日中提到新的视频修复与超分辨率工具: 功能亮点包括画面缺失修补、模糊去除、清晰度提升(最高 4 倍超分辨率)。 同时支持去模糊、修复、超分任务,操作简便,仅需一张 13G 显存 GPU。 项目地址:
2025-02-25