直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
适合电商设计运用的AI工具
以下是一些适合电商设计运用的 AI 工具及相关应用: Midjourney 新编辑器: 产品海报设计:将产品图片导入编辑器,通过简单操作和提示词生成不同风格的海报。 家具材质变化:利用图像重纹理化模式,快速为家具图片换上各种材质。 艺术字体海报:通过白底字体图和图像重纹理化模式,变换成各种炫酷的字体海报风格,建议使用竖版白底文字图。 用于阿里巴巴营销技巧和产品页面优化的 AI 应用: 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 关键词优化:AI 推荐高流量、高转化的关键词,优化产品标题和描述。 产品页面设计:AI 设计工具生成吸引人的产品页面布局。 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 图像识别和优化:选择或生成高质量的产品图片。 价格策略:分析不同价格点对销量的影响,制定有竞争力的价格策略。 客户反馈分析:了解客户需求,优化产品和服务。 个性化推荐:根据用户购买历史和偏好提供个性化产品推荐。 聊天机器人:提供 24/7 客户服务,解答疑问,提高满意度。 营销活动分析:了解活动效果,吸引顾客并产生销售。 库存管理:预测需求,优化库存管理。 支付和交易优化:分析支付方式对交易成功率的影响,优化支付流程。 社交媒体营销:在社交媒体上找到目标客户群体,精准营销提高知名度。 直播和视频营销:分析观众行为,优化直播和视频内容,提高参与度和转化率。 其他生成式 AI 工具: :帮助品牌创建引人注目的产品照片。 :制作用于电子邮件或社交媒体的营销材料。 :编写经过 SEO 优化的产品描述。未来有望仅通过描述期望的审美并点击按钮,创建完整的电商商店及营销材料。
2025-02-24
AI实现测试
以下是关于 AI 实现测试的相关内容: AI 生成测试用例的方法和工具: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 关于 AI 的一些分享: 通过具体例子让大家对 AI 有印象,介绍 AI 技术原理,解释“AI 能做什么”,介绍工具案例和资料,聊 AI 的未来发展及影响。从图灵说起,他在二战期间构建的机器破译德军密码,并提出“图灵测试”来判断机器是否具有智能。2024 年春 OpenAI 公司发布新一代 ChatGPT 聊天机器人(GPT4o),其交流体验接近正常人类交流,引发关于其是否能通过图灵测试及是否拥有自主意识等新问题的讨论。 在编程中利用 AI 进行测试的案例: 在卡密系统的开发中,为确保功能准确性,可请 AI 帮忙设计测试用例。Mac 用户可通过 Command + K 唤醒 AI 生成测试用例,然后逐个验证,检查功能是否遗漏、是否存在 Bug。同时要注意问题一个一个修复,先完成核心功能再追求完美。
2025-02-24
方言识别
以下是关于方言识别的相关信息: 在 AI 术语库中,与语音相关的术语有“Speech Recognition(语音识别)”。 语音转文本(Speech to text)支持的语言包括:南非荷兰语、阿拉伯语、亚美尼亚语、阿塞拜疆语、白俄罗斯语、波斯尼亚文、保加利亚文、加泰罗尼亚文、中文、克罗地亚文、捷克文、丹麦文、荷兰文、英国英语、爱沙尼亚文、芬兰文、法国法式英语、加利西亞語、德國語、希臘語、希伯來語、印地語、匈牙利語、冰岛语、印度尼西亚语、意大利语、日本语、卡纳达语、哈萨克语、韩语、拉脱维亚语、立陶宛语、马其顿语、马来语、马拉地语、毛里求斯语、尼泊尔语、挪威语、波斯语、波苏尼语、塔加洛语、泰米尔语、泰语、土耳其语、乌克兰语、乌尔都语。 在模型方面,Whisper 是一种通用的语音识别模型,在不同音频的大型数据集上进行训练,是多任务模型,可执行多语言语音识别、语音翻译和语言识别。目前可通过 API(模型名 whisper1)使用 Whisper v2large 模型。Whisper 的开源版本和通过 API 提供的版本目前无区别,但 API 提供了优化的推理过程,运行速度更快。更多技术细节可阅读论文(https://arxiv.org/abs/2212.04356)。 嵌入(Embedding)是文本的数字表示,可用于衡量两段文本之间的相关性。第二代嵌入模型 textembeddingada002 旨在以一小部分成本取代之前的 16 种第一代嵌入模型,可用于搜索、聚类、推荐、异常检测和分类任务。更多信息可在公告博客文章(https://openai.com/blog/newandimprovedembeddingmodel)中阅读。
2025-02-24
有哪些可以去除AI味的指令
以下是一些关于去除 AI 味的方法和相关内容: 1. 文风与语言能力:网上常见的“AI 味”表现为使用如“首先、其次、再者、引人入胜”等套话,这种文风不吸引人。去除“AI 味”可注重语言的自然和通俗,使用语气词如“嗯、吧、啊、哈哈哈”等,增加口语化词语,使回答更贴近日常对话风格。 2. 塑造人设:让聊天 AI 变得不正经、放肆、幽默。幽默可通过夸张、比喻、双关、对比、反差等手法实现;不正经涉及回答问题的逻辑与态度;放肆意味着让 AI 大胆地开“玩笑”,突破其原本恭敬服务的设定,但要注意避免侵犯他人。 3. 小细节方面:有选手会在标点符号、断句和表情符号上下功夫,但当大家都熟悉后,内容才是关键。 需要注意的是,有人认为去除“AI 味”是个伪命题,因为所谓的“AI 味”实际上是“GPT 味”。在 GPT 刚出现时,为了让模型听懂人话,OpenAI 雇了很多肯尼亚人做数据标注。
2025-02-24
模型微调
以下是关于模型微调的相关信息: 微调步骤: 1. 微调脚本: LoRA 微调: 脚本见: 具体实现代码见: 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见: 具体实现代码见: 2. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 微调介绍: 微调可让您从 API 提供的模型中获得更多收益,包括比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已经在来自开放互联网的大量文本上进行了预训练。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例。这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用您的微调模型等步骤。 可微调的模型: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。 OpenAI 的模型概述: OpenAI API 由具有不同功能和价位的多种模型提供支持。您还可以通过微调针对您的特定用例对我们的原始基本模型进行有限的定制。包括 GPT4 Beta、GPT3.5、DALL·E Beta、Whisper Beta、Embeddings、Codex Limited Beta、Moderation、GPT3 等模型。
2025-02-24
什么应用可以将草图进行绘制
以下是一些可以将草图进行绘制的应用: 1. Stable Diffusion:例如其中的 ControlNet 插件,如 tile 模型,可以对草图进行细化和加强细节。在放大图片时,能在较高的重绘幅度下保持画面质量。 2. 摩搭平台:可用于参加相关比赛,如“AI 梦一单一世界比赛”,作为底膜训练 Lora,并生成作品。 此外,在 AI 绘图中,还需要考虑构图、色彩、光影等因素,选择合适的景别和构图方式,以创作出高质量的作品。
2025-02-24
帮我设计一套从零开始系统学习AI的路线
以下是为您设计的从零开始系统学习 AI 的路线: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-24
帮我设计一套从零开始系统学习AI的路线,为期3个月
以下是为您设计的为期 3 个月从零开始系统学习 AI 的路线: 第一个月: 进行系统性的学习,阅读相关的基础书籍,例如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。 观看优质的 AI 课程,如 Coursera 上的相关课程。 第二个月: 学习 AI 绘画,下载相关软件如 SD 秋叶安装包,并观看教学视频,逐步掌握操作技巧。 加入 AI 学习社区,如 waytoAGI 社区,参考新手指引,获取更多学习资源和交流经验。 第三个月: 深入学习生成式人工智能项目,了解其生命周期和相关技术,如监督学习构建餐厅评价鉴别系统的过程。 尝试亲自进行生成式 AI 代码的编写和运行。 探索 AI 变现的途径,如用 GPT 和 SD 制作图文故事绘本、小说推文等项目。 请注意,学习过程中要不断实践和总结,根据自身情况进行调整和优化。
2025-02-24
帮我设计一套从零开始系统学习AI的路线,为期6个月
以下是为您设计的为期 6 个月从零开始系统学习 AI 的路线: 第一个月: 进行系统性的学习,阅读相关的基础书籍,如《人工智能:一种现代方法》等,了解 AI 的底层原理和发展历程。 寻找优质的在线课程,例如 Coursera 上的相关课程。 第二个月: 深入学习 AI 的基础知识,包括机器学习、深度学习的基本概念。 实践一些简单的机器学习算法,如线性回归、决策树等。 第三个月: 学习深度学习框架,如 TensorFlow 或 PyTorch。 尝试使用这些框架实现一些简单的深度学习模型,如多层感知机。 第四个月: 探索自然语言处理和计算机视觉等领域的基础知识。 可以通过一些开源项目和数据集进行实践。 第五个月: 深入研究特定的 AI 应用领域,如医疗、金融等。 参与相关的线上讨论和社区,与同行交流经验。 第六个月: 总结所学知识,进行项目实践,将所学应用到实际问题中。 关注最新的 AI 研究动态和行业发展趋势。 在学习过程中,要注重理论与实践相结合,多动手实践,积极参与社区交流,不断提升自己的能力。
2025-02-24
户型方案布局AI软件有哪些
以下是一些户型方案布局的 AI 软件: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,设计师输入房间面积需求和土地约束,软件能自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。 每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-24