直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
生成式AI相关知识
生成式 AI 相关知识如下: GenAI 是生成式 AI 的一种,全称 Generative AI,是基于深度学习技术和机器学习算法,从已有数据中学习并生成新数据或内容的 AI 应用。其通过大规模数据集训练深度神经网络模型,能为游戏、娱乐和产品设计等提供解决方案,典型的 GenAI 包括 OpenAI 推出的 ChatGPT、GPT4、DALLE 以及百度的文心一言、阿里云的通义千问等。但在数据处理中存在未经授权收集信息、提供虚假信息、侵害个人隐私等潜在合规风险。 AIGC 指利用 GenAI 创建的内容,包括图像、视频、音频、文本和三维模型等。其工具使用机器学习算法,通常基于自然语言处理,分析大型文本数据集并学习生成新内容。国内主要在《网络安全法》《数据安全法》《个人信息保护法》框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管。 AIGC 主要分为语言文本生成、图像生成和音视频生成,分别利用不同的模型和技术,应用于多个领域,但也可能引发内生风险、数据隐私问题和知识产权风险,相关法律和规定对其有一定要求,但部分问题仍需更多法律明确,且需加强监管和伦理约束。 此外,台湾大学李宏毅教授的生成式 AI 课程介绍了其基本概念、发展历程、技术架构和应用场景等内容,共 12 讲,每讲约 2 小时。通过学习该课程,可掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。课程包括生成式 AI 的定义和分类、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等内容,并提供了教材、参考书籍、在线课程、开源项目等学习资源和学习方法。
2025-02-24
deepseek 多维表格
以下是关于 deepseek 多维表格的相关内容: 该创意来自@向阳乔木,旨在做一个专属的好文推荐网站,其逻辑是当阅读到好文章时,可一键存储到飞书多维表格,经 AI 处理后自动在博客网站上呈现。实现此需分 3 步: 1. 创建带有 AI 能力(以 DeepSeek R1 为主)的飞书多维表格。但需注意,某些字段因由 R1 生成可能存在问题,需通过特定操作处理,如第六个字段“金句输出”、第七个字段“概要内容提炼”等,按相应步骤操作后,输入第一个链接,所有字段可自动生成,完成 AI 数据库设置。 2. 使用 Trae 生成网页,呈现多维表格的内容。 3. 使用 Trae 生成浏览器插件,实现一键存入多维表格。 此外,May 在其《雪梅 May 的 AI 学习日记》中提到,作为飞书多维表格重度用户,强推加了 AI 功能及 deepseek 后的飞书多维表格。对于 AI agent 来说,扣子只能做单次任务,而飞书多维表格的 agent 可做批量任务,使用 AI agent 可能是个人的事,但用飞书多维表格后可成为团队协作的事,方便团队小伙伴一起提交内容让 AI 批量处理并返回。相关学习资料包括: 2025/2/13 回放链接:https://www.feishu.cn/community/course/content?course_id=7469623322680999964&class_id=7469623322716717084&lesson_id=7469623696753360900&content_id=7469623696782770180 练习作品:
2025-02-24
openai
OpenAI 相关信息如下: 模型: OpenAI API 由多种具有不同功能和价位的模型提供支持,还可通过微调针对特定用例对原始基本模型进行有限定制。 具体模型包括:GPT4 Beta(一组改进 GPT3.5 的模型,可理解和生成自然语言或代码)、GPT3.5(一组改进 GPT3 的模型,可理解并生成自然语言或代码)、DALL·E Beta(可在给定自然语言提示的情况下生成和编辑图像的模型)、Whisper Beta(可将音频转换为文本的模型)、Embeddings(可将文本转换为数字形式的模型)、Codex Limited Beta(一组可理解和生成代码的模型,包括将自然语言转换为代码)、Moderation(可检测文本是否敏感或不安全的微调模型)、GPT3(一组可理解和生成自然语言的模型)。 通用人工智能(AGI)计划: 有网络上传播的关于 OpenAI 计划在 2027 年前实现通用人工智能(AGI)的计划的相关文档,内容为各种报道和推文的拼凑猜测。 文档提到 OpenAI 于 2022 年 8 月开始训练一个拥有 125 万亿参数的多模态模型,第一阶段被称为 Arrakis 或 Q,该模型于 2023 年 12 月完成训练,但因高昂推理成本发布被取消,原计划 2025 年发布的 GPT5 取消,Gobi(GPT4.5)被重新命名为 GPT5。 技术栈: 从 GPT、DALL·E 到 Sora,OpenAI 成功跑通了 AGI 的所有技术栈。加州大学伯克利分校计算机科学 PHD、知乎作者 SIY.Z 从技术实现、商业和技术趋势上分析了原因,并尝试预测了 OpenAI 下一步的进展。
2025-02-24
如何在拼多多接入AI客服
在网站上接入 AI 客服通常可以按照以下步骤进行: 1. 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助更好地应对客户咨询。 另外,基于 COW 框架实现 ChatBot 时需要注意: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 基于相关教程,可实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。本文只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 可选择多种模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等。 支持多种消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-24
如何接入AI客服
接入 AI 客服主要有以下两种方式: 1. 在网站上接入 AI 助手: 创建大模型问答应用:通过百炼创建大模型应用,并获取调用大模型应用 API 的相关凭证。 搭建示例网站:通过函数计算,快速搭建一个网站,模拟企业官网或其他站点。 引入 AI 助手:修改几行代码,实现在网站中引入 AI 助手。 增加私有知识:准备私有知识,让 AI 助手能回答原本无法准确回答的问题,更好地应对客户咨询。 2. 在微信上接入 AI 客服: 微信公众号:Coze AI 平台支持与微信公众号对接,使 AI 机器人能够自动回复用户消息。 微信服务号:Coze AI 平台支持与微信服务号对接,提升服务效率。 微信客服:Coze AI 平台支持与微信客服对接,自动回答用户咨询,提高客服响应速度。 个人微信/微信群:最近 Coze 的国内版正式发布了 API 接口功能,使得直接对接个人微信甚至微信群成为可能。但对接国外版 Coze 平台需要部署的服务支持黑魔法。
2025-02-24
如何给AI提问,得到自己想要的更准确的内容
以下是一些给 AI 提问以获得更准确内容的方法: 1. 设定角色:给 AI 赋予一个明确的角色,例如“你是一个专注于民商事法律领域的律师”,让其以特定角色来理解和回答问题。 2. 举例子:通过给出实际的例子,能使 AI 更准确地了解您的要求。 3. 连续提问:对于复杂的问题,可以就一个问题连续提问,根据 AI 的回复不断细化要求。 4. 直接问 AI 如何提问:当不知道如何提问时,可以先向 AI 请教如何提问,然后用它产生的问题再问它。 5. 讲清楚背景和目的:在提问时,除了明确的问题描述,还要梳理清楚背景信息和提问目的,帮助 AI 更好地理解问题上下文。 6. 学会提问:使用清晰、具体的语言,避免模糊表述,同时了解 AI 的工作原理和限制,设计合适的问题。 7. 拆解环节、切分流程:将复杂任务分解成更小、更具体的环节,让 AI 更精确地执行。 8. 对于编程相关问题: 提供代码范例,尤其是新进入代码节点的 IDE 中的范例。 说清楚输入变量与输出变量的类型。 说明与工作流中匹配或想要的变量名称。 列出输入变量的具体书写形式。 讲清楚代码要实现的功能,复杂功能尽量说清运行逻辑,描述中用变量名称指代相关变量。并可参考以下提问范式:。关键步骤请附上注释。
2025-02-24
如何构建属于自己的prompt
构建属于自己的 prompt 可以参考以下思路: 1. 明确构建目的:如为了节省力气,根据初始问题自动生成优质 prompt。 2. 遵循一定的流程: 按照特定的方法论,如参考 。 以清晰的结构和灵活的表达方式进行,例如对于视频模型 MiniMax 海螺 AI,可参考其提供的两类 prompt 参考公式。 3. 针对不同模型和需求选择合适的方式: 对于 Claude,可用 Lisp 或 Markdown 格式构建 prompt,直接打开 Claude 首页发送提示词进行初始化后使用。 对于视频创作,若没有明确的镜头呈现需求或期待激发创作灵感,可使用 Prompt 基础公式,即“要创建的主要表现物+场景空间+运动/变化”。 例如:“一只小狗在公园中奔跑”“一个女人打着伞在雨中的街头行走”“山谷中的一条小溪静静流淌”。
2025-02-24
我是一个什么都不懂的小白,但是我想通过ai弄出一个应用,我该怎么做?
对于纯小白想要通过 AI 开发应用,您可以参考以下步骤: 1. 从基础小任务开始: 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以此学会必备的调试技能。 比如在学习写 chrome 插件时,可以要求 AI 选择适合小白上手的技术栈生成简单的示范项目,并包含尽可能全面的典型文件和功能,同时讲解每个文件的作用和程序运行的逻辑。 如果使用 o1mini,还可以在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(windows 机器则是 create.cmd),从而一次性生成多个目录和文件。 2. 明确项目需求: 通过和 AI 的对话,逐步明确项目需求。 可以让 AI 像高级别的懂技术的产品经理那样向您提问,帮助梳理产品功能,尤其注意涉及技术方案选择的关键点。 来回对话后,让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知正在做的功能点。 需要注意的是,虽然 AI 能提供帮助,但对于复杂的应用开发,仍需要您在过程中逐渐学习一些编程知识。目前像字节 Coze 这样的工具本质上是「AIfirst aPaaS」,它把实现应用所需的不同类型代码用不同可视化工具实现,生成的是「配置」,且开发和运行阶段都有大模型的支持。
2025-02-24
如果我想让AI帮我写一篇楼盘推广软文,我要如何输入指令
如果您想让 AI 帮您写一篇楼盘推广软文,以下是一些输入指令的建议: 1. 明确指令:使用清晰、直接的语言告诉 AI 您的需求,例如“为我写一篇楼盘推广软文”。 2. 提供背景信息:包括楼盘的位置、特色、目标受众等,比如“这是位于市中心的高端楼盘,目标受众是追求高品质生活的成功人士”。 3. 描述输入数据:如果有相关的楼盘资料、图片、周边环境介绍等,可以提供给 AI,例如“楼盘拥有独特的园林设计,周边配套有大型商场和优质学校”。 4. 给出输出引导:明确软文的格式、语气、长度等要求,比如“以生动活泼的语言,写成一篇 800 字左右的软文,采用故事性的叙述方式”。 同时,您还需要注意以下几点: 1. 指令要简洁明了,避免歧义。 2. 尽量提供详细和准确的信息,以便 AI 更好地理解您的需求。 3. 可以参考一些结构化的提示词设计方法,如 ICIO 框架,即 Instruction(指令)、Context(背景信息)、Input Data(输入数据)和 Output Indicator(输出引导)。
2025-02-24
AI产品经理实战手册
以下是为您提供的关于 AI 产品经理的相关信息: 1. 2 月 7 日的《DeepSeek 爆火的当下:2025,人人都是顶尖 AI 产品经理实操指南》指出,过去一年“AI 在产品管理中的应用”成为热门话题,“所有产品经理都需要成为 AI 产品经理”的观点在各种场合反复出现,AI 正在重塑工作方式。 2. 《Claude 的 5 层 Prompt 体系:从 AI 用户到 AI 指挥官的进阶之路》中提到,将复杂需求拆解为原子化 Prompt 组件是掌握 5 层 Prompt 体系的关键,并通过跨国科技公司规划下一代智能家居系统的实际案例展示了应用方法,包括 User Requirement、System Prompt、Global Rule 等多个层面,还创建了多种风格用于不同场景。 3. 对于 AI 产品经理的划分,仅供娱乐和参考: 入门级:能通过开源网站或课程了解 AI 概念,使用并动手实践应用搭建。 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用工具手搓出 AI 应用验证想法。 落地应用级:有成功落地应用案例并产生商业化价值。同时指出,对 AI 产品经理要求懂得技术框架,对技术边界有认知,产品经理要关注场景、痛点、价值。还列举了一些落地案例。
2025-02-24