「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
我现在要对一些很糊的图像进行图像修复,就是把图像变高清,有什么工具吗?
以下是一些可用于图像修复变高清的工具和方法: 1. 图像修复放大流程: 输入原始图像:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 图像高清修复:使用 Iceclear/StableSR 模型,并搭配 Stable SR Upscaler 模型,推理图片噪点以还原图像。提示词应包含想要达到的目的内容,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 图像高清放大:对第一次放大修复后的图像进行二次修复,realisticVision 底膜效果较好。使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型进行二次放大。 2. 星流一站式 AI 设计工具: 右侧生成器的高级模式:与入门模式相比增加了基础模型、图片参考等更多功能。基础模型允许使用更多微调大模型和更多图像控制功能,如高清分辨率修复等。同时,还可以调整放大算法、重绘幅度等参数,以及选择不同的采样器。 3. SD 新手入门图文教程: 文生图最简流程中的一些参数: CFG Scale(提示词相关性):控制图像与提示的匹配程度,一般开到 7 11。 生成批次和每批数量:影响生成图像的组数和数量。 尺寸:推荐使用小尺寸分辨率结合高清修复(Hires fix)。 种子:决定模型生成图片的随机性。 高清修复:通过勾选“Highres.fix”启用,先按指定尺寸生成图片,再通过放大算法扩大分辨率以实现高清大图效果。
2025-03-04
大语言模型学习
学习大型语言模型(LLM)的开发是一个系统性的过程,涵盖多个方面的知识和技能,以下是详细的学习路径和相关建议: 1. 深度学习和自然语言处理基础 掌握机器学习、深度学习、神经网络等基础理论。 熟悉自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理 深入了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 研读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调 进行大规模文本语料预处理。 运用 LLM 预训练框架,如 PyTorch、TensorFlow 等。 对 LLM 模型进行微调以实现特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习 结合行业场景,开展个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态 关注顶会最新论文、技术博客等资源。 此外,关于大语言模型介绍,您可以通过以下视频课程学习: 视频课程学习地址:https://youtu.be/zizonToFXDs 宝玉 XP 的翻译版本:https://www.youtube.com/watch?v=zfFA1tb3q8Y Google 的教学视频《Introduction to Large Language Models|大语言模型介绍》,介绍了大型语言模型(Large Language Models,LLMs)的概念、使用场景、提示调整以及 Google 的 Gen AI 开发工具。大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。这些模型经过训练,可以解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题。然后,可以利用相对较小的领域数据集对这些模型进行定制,以解决零售、金融、娱乐等不同领域的特定问题。大型语言模型的三个主要特征是:大型、通用性和预训练微调。“大型”既指训练数据集的巨大规模,也指参数的数量。“通用性”意味着这些模型足够解决常见问题。“预训练和微调”是指用大型数据集对大型语言模型进行一般性的预训练,然后用较小的数据集对其进行特定目的的微调。使用大型语言模型的好处包括:一种模型可用于不同的任务;微调大型语言模型需要的领域训练数据较少;随着数据和参数的增加,大型语言模型的性能也在持续增长。此外,视频还解释了传统编程、神经网络和生成模型的不同,以及预训练模型的 LLM 开发与传统的 ML 开发的区别。在自然语言处理中,提示设计和提示工程是两个密切相关的概念,这两者都涉及创建清晰、简洁、富有信息的提示。视频中还提到了三种类型的大型语言模型:通用语言模型、指令调整模型和对话调整模型。每种模型都需要以不同的方式进行提示。 AI 教父 Hinton 最新万字精彩访谈中提到: 随着模型规模的扩大,其推理能力会得到提升。这种推理能力的提升类似于 AlphaGo 或 AlphaZero 的工作方式,它们通过蒙特卡罗推演来修改评估函数,从而提高推理精度。大型语言模型也应该开始通过推理来训练,而不仅仅是模仿人类的行为。 在多模态学习方面,引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习,这将使其在未来占据主导地位。 在语言与认知的关系上,Hinton 提出了三种观点:符号观点、向量观点和嵌入观点。他认为,最合理的模型是将符号转换成大向量,但保留符号的表面结构,这样可以更好地理解和预测下一个符号。 Hinton 回顾了他在 2009 年提出使用 GPU 进行神经网络训练的早期直觉。他发现,使用 GPU 可以将运算速度提高 30 倍,这对于机器学习研究人员来说至关重要。他在 NIPS 会议上公开推荐了 NVIDIA 的 GPU,并向 NVIDIA 请求赞助,最终得到黄仁勋的支持。 Hinton 提出,模拟计算可以在较低的功率下运行大型语言模型,但每个硬件的特性都会有所不同,因此学习过程需要利用硬件的特定属性。然而,这种方法的局限性在于,当一个人去世后,他的大脑中的权重对其他人没有用处。相比之下,数字系统可以通过共享权重来提高效率,因为一旦有了权重,就可以在不同的计算机上复制相同的计算过程。这种方式使得数字系统在知识共享方面远胜于人类。 Hinton 还讨论了神经科学的时间尺度问题,指出在大脑中,权重改变的时间尺度很多,这是我们的神经模型尚未实现的。大脑使用快速权重进行临时记忆,而我们的模型由于需要处理大量不同的情况,所以无法实现这一点。
2025-03-04
我现在要对一些很糊的图像进行图像修复,有什么好用的工具吗?
以下为您推荐一些用于图像修复的工具和方法: 1. StableSR: 需要使用StabilityAI官方的Stable Diffusion V2.1 512 EMA模型,放入stablediffusionwebui/models/StableDiffusion/文件夹中。 StableSR模块(约400M大小)放入stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 还有一个VQVAE(约750MB大小)放在stablediffusionwebui/models/VAE中。 测试时发现,不同的重绘幅度效果不同,重绘幅度较大时可能会改变人物形象,对于追求最大保真度的老照片修复,重绘方法不太好。 2. Stable Diffusion: 除生成新照片外,可用于修复糊的照片,效果较好。 恢复画质的功能叫“后期处理”,上传图片后选择放大器,修复二次元照片选“RESRGAN 4x+Anime68”,其他实物照片选“RESRGAN 4x+”。 修复真人照片时,放大器选择“无(None)”,并将“GFPGAN强度”参数拉满(1),可修复人脸,但其他部分可能仍较糊。 3. 图像修复放大流程: 分为输入原始图像、修复图像、放大并重绘图像三部分。 图像输入:添加Load Image节点加载图像,不建议上传大分辨率图片,处理时间长。 图像高清修复:Checkpoint大模型使用Iceclear/StableSR,并搭配Stable SR Upscaler模型,提示词包含正向和反向描述。 图像高清放大:用realisticVision底膜,使用提示词反推node提取画面提示词,搭配tile ControlNet提升细节感,用合适的高清放大模型二次放大。
2025-03-04
写短视频口播文案,用哪个AI效果最好
以下是为您提供的关于写短视频口播文案的 AI 工具相关信息: 在营销板块,有智能营销矩阵平台,其在图文内容生产方面为企业提供选题生成、文案创作等定制化服务。 目前一些相关的 AI 工具包括: 1. 美趣 AI:具有图片生成功能,是原生的写作软件。 2. 说得相机提词器:功能型写作软件。 3. AI 智能写作:原生的写作软件。 此外,TecCreative 创意工具箱中也有一些相关功能,如数字人口播配音,只需输入口播文案,选择期望生成的数字人形象及目标语言,即可生成数字人口播视频。 需要注意的是,不同的 AI 工具可能具有不同的特点和优势,您可以根据自己的需求和使用习惯进行选择。
2025-03-04
写短视频口播最好用的AI是哪个
目前市场上有多种适用于短视频口播创作的 AI 工具,以下为您列举部分: 美趣 AI:具有原生的图片生成功能,是一款 AI 绘画、视频和写作生成神器。 说得相机提词器:功能型写作软件,适用于口播短视频的文案生成及美颜拍摄。 AI 智能写作:原生的写作软件。 创客贴 AI:具有平面设计功能。 360AI 搜索:功能型的智慧搜索工具。 图趣 AI:原生的图片生成工具。 Molica AI:原生的图片生成工具。 文案宝:原生的个人助理,具有 AI Bot 智能生成器和一键 AI 识图功能。 需要注意的是,选择最适合的 AI 工具取决于您的具体需求和使用习惯。
2025-03-04
我作为一个主播,有什么软件可以接受到我语音后,它思考给我一个反馈建议,比如话题延伸,增加交谈幽默感等
目前市面上可能没有专门针对您这种需求的单一软件。但是,一些语音识别和智能助手类的应用可能会对您有所帮助。例如,百度的语音识别服务结合一些智能分析工具,可能能够在一定程度上对您的语音进行分析并提供初步的反馈。另外,像一些直播辅助工具,虽然可能不能完全满足您的所有需求,但也可能提供一些相关的提示和建议。不过,这些工具可能需要您根据自己的具体需求进行筛选和试用,以找到最适合您的那一款。
2025-03-04
生成插图的工具
以下是一些生成插图的工具和方法: 1. Coze 卡牌生成器: 生成插图:使用扣子图像流中的“图像生成”和“图像参考”节点搭建文生图、图生图工作流,用户可与大语言模型交互直至生成满意的插图。 制作成卡牌:主要分为选择合适的卡牌母版、将生成的插图与母版组合、添加卡牌名称三个部分,使用图像流的“叠图”和“添加文字”节点组成工作流。 2. 让生成的图片更加可控的方法: 喂参考图:先上传喜欢的参考图,复制其链接,在关键词处填写图片链接和相关关键词,如描述人物的服装、表情等。 使用 panels 命令:可生成连续的动作和表情设计,对于设计有连续动作和表情的角色很方便。 3. 【SD】生成简笔水彩风格插画: 大模型和 lora 的组合:使用“Flat2D Animerge”大模型,适合生成卡通动漫图片,CFG 值建议在 5 或 6(使用动态阈值修复可拉到 11)。 lora:“Chinese painting style”可增加中国画水彩风格效果,权重设置为 0.4;“Crayon drawing”可添加简单线条和小孩子笔触,权重设置为 0.8。 操作步骤:将图片丢到标签器中反推关键词,发送到“文生图”,在正向提示词末尾添加 lora,设置好尺寸和重绘幅度,将图放入 controlnet 中选择 tile 模型,权重为 0.5,控制模式选择“更注重提示词”。
2025-03-04
作为美妆护肤行业的,有什么 AI 工具能够用吗?
在美妆护肤行业,以下是一些可用的 AI 工具: 1. 美丽修行定制方案功能:通过图像识别和数据分析,根据用户上传的照片和肤质信息定制个性化的护肤方案,包括产品推荐和使用顺序,市场规模达数亿美元。 2. 美图美妆 APP:利用图像识别和数据分析,根据用户肤质提供美容护肤建议,市场规模达数亿美元。 3. 美丽修行 APP:基于数据分析和自然语言处理,通过用户上传的照片和填写的肤质信息为用户推荐适合的美容护肤产品,市场规模达数亿美元。
2025-03-04
Coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可以接入抖音评论区,帮用户自动回复评论。若想快速上手,可参考视频。不知 Coze 是什么,可参考文章。 安装 Coze Scraper: 通过应用商店安装: 1. 打开 Chrome 浏览器。 2. 点击在 Chrome 应用商店中打开 Coze Scrapper 扩展程序。 3. 单击添加至 Chrome。 4. 在弹出的页面,单击添加扩展程序。 本地安装: 1. 单击下载安装包,然后解压下载的文件。 2. 打开 Chrome 浏览器。 3. 在浏览器中输入 chrome://extensions 打开扩展程序页面,确认开发者模式处于打开状态。 4. 点击加载已解压的扩展程序,选择已解压的文件夹。 Coze 记账管家: 什么是 COZE:是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,可白嫖海量大模型免费使用,有丰富的插件生态。 什么是记账管家:基于 COZE 平台的能力搭建的记账应用,可直接和 coze 说收入或支出情况,coze 会自动记账并计算账户余额,每一笔记账记录都不会丢失。点击以下卡片体验记账管家。
2025-03-04
企业微信 智能机器人
以下是关于在企业微信中搭建智能机器人的相关内容: 一、使用 Coze 在微信里搭建机器人的目的 1. 训练公司自有的数据,让机器人对外提供客服功能。 2. 将训练好的机器人与公司的企业微信绑定,对外提供客服功能。 3. 进阶版:同时根据客户咨询的信息,收集用户联系方式信息形成销售线索。 二、使用工具 1. 字节旗下的 Coze AI 智能机器人工具。 2. 需要有微信公众号订阅号或服务号的管理权。 三、功能体验 扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a B站公开视频 四、基于 Hook 机制的微信 AI 机器人部署项目 1. 把 Administrators 先改成“wxid_dna83ykqawl222”。 2. 如果已有 FastGPT 或者 OpenAI 的 key,可把 Ai_Lock 修改成“1”,并在 OpenAI 处添加模型 key,填写格式参照原有格式;若暂时没有,可保持 Ai_Lock 是 0。 3. 修改后点击保存。 4. 返回 NGCbot 文件夹下,找到 main.py 文件,双击开始运行。 5. 双击后会看到页面并弹出微信登录框,正常登录微信(若显示版本过低登录失败,参考登录失败的解决方法)。 6. 进入微信后,系统会自动初始化必备文件,等待初始化完成。 7. 运行成功后,用“大号”给机器人发一条消息,拿到自己的 wxid 返回到第 1 步中 config 让替换的地方进行替换。 8. 添加完之后,建议使用小号登录,然后用大号作为管理员对小号发号施令。 五、基于 Hook 机制的微信 AI 机器人功能使用教程 1. 积分系统:此项目加入了积分系统,只有积分的用户才可以发起 AI 对话,主管理员的大号可对别人进行加减积分的操作,使用方式:@用户 加 100,加字后边有空格。 2. 群聊推送:大号在群里发送“开启推送”,即可在此群开启推送服务。然后,大号在与小号的私聊中发送任意公众号卡片,小号就可以把信息转发到群聊中(目前仅支持公众号卡片)。 3. 小工具使用示例(部分):发送 Help 查看使用方式。 六、登录失败的解决方法 1. 下载文件,放到 NGCbot 文件夹里。 2. 打开微信,先不要登录,保持在扫码/登录页面。 3. 在文件夹空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”,然后输入相关命令,点击回车。 4. 回到文件夹下,双击 main.py 登录微信。
2025-03-04