「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
AI是什么
AI 是一门令人兴奋的科学,它是某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,可以把 AI 当成一个黑箱,其生态位是一种似人而非人的存在。 从技术角度看,最初计算机是按照明确定义的程序(即算法)来对数字进行运算。但对于像根据照片判断一个人的年龄这类任务,我们无法明确编程的每一个步骤,而这正是 AI 所感兴趣的。 AI 已经渗透到各行各业,在医疗保健领域可用于医学影像分析、药物研发等;在金融服务领域可用于风控和反欺诈、信用评估等;在零售和电子商务领域可用于产品推荐、搜索和个性化等;在制造业领域可用于预测性维护、质量控制等;在交通运输领域也有相应应用。
2025-01-11
AI生成题库
以下是关于 AI 生成题库的相关信息: 在教育领域,借助大模型可以实现个性化学习和定制化作业。例如,教师通过提示词到位、示例清晰的操作,能让 AI 模仿中高考、托福雅思、SAT、GRE 等测试题,为教师提供源源不断的真题库,为学生提供错题练习库。以英语学科的选词填空出题为例,其提示词逻辑可迁移到语文学科。 在商业化问答场景中,检索原理包括信息筛选与确认、消除冗余、关系映射、上下文构建、语义融合以及预备生成阶段等步骤。最终,整合好的上下文信息被编码成适合生成器处理的格式传递给大语言模型,生成准确连贯的答案。 FastGPT 是一个功能强大、易于使用的知识库问答系统,基于 LLM 技术能理解自然语言并生成高质量答案,支持连接外部知识库获取更全面信息,具有可视化工作流编排工具方便创建复杂问答场景,以及开箱即用的数据处理和模型调用功能方便快速上手。可用于构建智能客服、知识库搜索、文档生成等应用。相关资源包括 FastGPT 官网、文档、GitHub 仓库以及个人版知识库部署教程。
2025-01-11
怎么用飞书ai助手在文档内部总结文档内容
以下是关于如何用飞书 AI 助手在文档内部总结文档内容的相关信息: 1. 大型语言模型在概括文本方面的应用:可在 Chat GPT 网络界面中完成,从入门代码开始,如导入 OpenAI、加载 API 密钥和使用 getCompletion 助手函数。还提到对产品评论进行摘要的任务及相关提示。包括文字总结、针对某种信息总结、尝试“提取”而不是“总结”、针对多项信息总结等方面。 2. 总结其他内容: 文章:可让 AI 总结不超过 2 万字的文章,如复制文章给 GPT 进行总结,GPT4 能识别重点内容。 B 站视频:通过获取视频字幕,将其提取后发给 AI 执行内容总结任务。可安装油猴脚本获取字幕,如 ,下载字幕并复制给 GPT 进行总结。 3. 实践:群总结工具 微信群聊总结 AI 助手:Mac 版可在技术支持。自己跑不起来的同学,可加机器人微信号:aoao_eth,把机器人拉进群。 新版本:有桌面应用,包括一键监控、总结、发送等功能。可使用桌面版或脚本版,下载后配置 app key 即可运行。暂时只有 mac 版本,windows 版本可自己构建或直接运行代码。提供了功能截图,如每日群聊监控和数据统计、一键总结等。
2025-01-11
你的大数据模型更新到什么时候?
以下是关于大数据模型更新的相关信息: 随着 GPT3.5Turbo 的发布,一些模型正在不断更新。为减少模型更改意外影响用户的可能性,还提供将在 3 个月内保持静态的模型版本。同时,人们能够贡献评估以帮助针对不同用例改进模型。如有兴趣,可查看存储库。以下模型是将在指定日期弃用的临时快照。若想使用最新的模型版本,请使用标准模型名称,如 GPT4 或 GPT3.5Turbo。 Midjourney 会定期发布新版本模型来提高效率、整体连贯性和质量。默认是最新的模型,可使用version 参数,其可选值为 1、2、3、4 和 5,该参数可缩写为v。Midjourney V5 模型是最新和最先进的模型,于 2023 年 3 月 15 日发布。要使用此模型,可在提示的末尾添加v 5 参数,或使用/settings 命令并选择 5️⃣MJ Version 5。 就在昨天,WebUI 的 ControlNet1.1.4 版本终于更新,这次的更新支持了 SDXL1.0 的模型。此次总共出了四种控制类型,分别是 Canny、Depth、Sketch 和 Openpose。可来到 Hugging Face 的网址:https://huggingface.co/lllyasviel/sd_control_collection/tree/main 查看相关模型。
2025-01-11
有没有好用的提示词优化工具
以下为您介绍一些好用的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言(如一个长头发的金发女孩)和单个词组(如女孩、金发、长头发)输入,且支持中英文。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 可调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词能帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 具备辅助功能,如翻译功能可一键将提示词翻译成英文,还能删除所有提示词,会员加速能提升图像生图速度和效率。 2. Midjourney Bot 的 /shorten 命令: 最短的提示,Option 5:tower of donuts,sprinkles 产生了最接近原始目标的图像。 许多填充词,如“异想天开”“令人着迷”和“杰作”可以省略。 了解“塔”和“魔法”被认为是重要的标记有助于解释为什么一些图像是用童话城堡元素生成的。 了解这一点提供了一条线索:如果目标是制作一堆美味的甜甜圈,则应该从提示中删除“神奇”。 该 /shorten 命令是一个工具,可帮助您探索 Midjourney Bot 如何解释标记并尝试单词,但可能不适用于所有主题和提示风格。
2025-01-11
我是一个AI新手并且没有编程能力,如果我想要一个属于自己的AI智能体,并解决实际生活中的一些问题,请问有什教程吗?
以下是为您提供的创建属于自己的 AI 智能体的相关教程: 1. 扣子 Coze: 扣子官网: 可以通过简单 3 步创建智能体:首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像。开发完成后,还可以将自己构建的 Bot 发布到各种社交平台和通讯软件上。 2. 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等): 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话进行具体设置或手工设置。 开始调试您的智能体并发布。 此外,智能体具有以下特点: 1. 强大的学习能力:能够通过大量的数据进行学习,从而获得对语言、图像等多种信息的理解和处理能力。 2. 灵活性:可以适应不同的任务和环境,表现出较高的灵活性和适应性。 3. 泛化能力:能够将学到的知识泛化到新的情境中,解决之前未见过的类似问题。 智能体应用类型包括: 1. 智能体应用(Assistant):基于上下文对话,自主决策并调用工具来完成复杂任务的对话式 AI 应用。示例场景如客户服务、个人助理、技术支持等。 2. 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。 3. 智能体编排应用:支持多智能体协作的流程式 AI 应用,能够编排多个智能体的执行逻辑,也可以使多个智能体自动规划和执行任务。
2025-01-11
推荐一些AI学习知识库
以下是为您推荐的一些 AI 学习知识库: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享,欢迎您实践后分享。 5. 体验 AI 产品:与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)互动,了解其工作原理和交互方式。 书籍推荐: 1. Python 方面:《Python 学习手册》《Python 编程》。 2. AI 方面:《人类简史》(“认知革命”相关章节)、《深度学习实战》。 课程&资源&信息推荐: 1. B 站 up 主“PAPAYA 电脑教室”的 Python 入门课,完全免费。 2. Andrej Karpathy 关于大模型的讲解,油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g ,B 站地址:https://www.bilibili.com/video/BV1AU421o7ob 。 3. AJ 和众多小伙伴们共创的资料库(一个飞书文档):?通往 AGI 之路(一个飞书文档),这是当下最全的中文 AI 资料库,免费、开源、共创,包含几乎所有有价值的文档、文章、资料、资讯,并永远第一时间更新,链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 。
2025-01-11
Comfyui教程
以下是一些关于 ComfyUI 的教程资源: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。可在获取相关信息。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。可在找到相关教程。 4. Bilibili:提供了从新手入门到精通各个阶段的一系列视频教程,能更直观地帮助学习。可在找到。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声。若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数。一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:一般设置在 6 8 之间较好。 5. sampler_name:可通过此设置采样器算法。 6. scheduler:调度器控制每个步骤中去噪的过程,可选择不同调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置为 1。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-11
如果开发agent
开发 Agent 可以从以下几个方面考虑: 1. 技术基础与经验: 对于 ComfyUI 新人来说,之前更多使用 Coze 做 Agent,涉及绘图功能会调用 Coze 的图像流。但图像流较弱时,会在 Glif 上做 Bot 并以插件调用 API 完成绘图功能。Glif 提供的云端 ComfyUI 带来更多图像玩法。 Coze 的工作流和 ComfyUI 的图像流代表了 Agent 内部两个子领域的领先水平,但大多数同学专注一个领域精进,好处是能做出落地的 Agent,短期短板是依赖平台或社区弥补。 例如,熟悉 Coze 的同学开发助理类 Bot 便捷,但出图自由度不高;熟悉 ComfyUI 的同学能完成高水平图像、视频流,但流程中 Agent 含量不高。 只要从擅长的阵地向另一块多迈出一步,就能更好把控 Agent 中各种节点的设计和运用。 2. 赚钱与应用方向: 赚钱方式多样,如 Key 商、写书、卖课、接项目、做镜像站等。 从做产品角度,选择的方向是 Agent。如 WebPilot 作者开发长文写作的 Agent 并对外提供接口。 熟悉业务结合 AI 能力打磨产品是护城河,是 AI 应用开发者应坚持的方向。 3. 市场机遇: AI Agent 开发正迎来重要市场机遇期,我们正经历人机交互范式的重大转变。 从精准交互到理解模糊意图,从信息孤岛到整合多源信息,从单一功能到全流程服务,每个领域都在寻找适合的 Agent 解决方案,带来前所未有的开发需求。 百宝箱的基因优势突出,依托支付宝庞大的线上线下商家网络和生活服务小程序生态,为开发者打开通向本地生活服务的大门。 本地生活服务是体现 Agent 价值的领域,复杂场景正是 Agent 擅长应对的。 技术浪潮不停,发现贴近生活、困扰用户的痛点是应用机遇,“让复杂的事情变简单”是开发者的使命。
2025-01-11
2024年人工智能指数报告 下载
以下是为您提供的 2024 年人工智能指数报告的相关下载信息: 1. 《》由微软和领英联合发布,揭示了人工智能(AI)在工作场所的快速增长和深远影响。 2. 可在知识星球下载的报告: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 3. 《》数据处理应从模型为中心转向数据为中心,并强调向量数据库在提升模型服务能力中的核心作用。 4. 斯坦福大学发布的基础模型透明度指数相关报告:在上一届 SOAI 发布后不久,斯坦福大学发布了其首个基础模型透明度指数,模型开发者的平均得分为 37 分。在团队的中期更新中,这一分数攀升至 58 分。2024 年 5 月,该指数的最新一期基于 100 项指标,评估了 14 家领先的基础模型开发者的透明度,这些指标涵盖“上游”因素数据、劳动力、计算、围绕能力和风险的“模型级”因素、围绕分布的“下游”标准以及社会影响。计算和使用政策的评分出现了最强劲的改善,而“上游”评分仍然疲弱。 5. 《2024 年人工智能现状:辉煌、戏谑和“牛市”》报告链接:
2025-01-11