「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
提示词
以下是关于提示词的相关知识: 艺术字生成: 模型选择图片 2.1,输入提示词(可参考案例提示词)。 案例参考: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘画面,支持中英文输入,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。启用提示词优化后,可扩展提示词,更生动地描述画面内容。 如何写好提示词: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 提示词要素: 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 示例:在文本分类任务的提示示例中,指令是“将文本分类为中性、否定或肯定”,输入数据是“我认为食物还可以”部分,输出指示是“情绪:”。提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-01-11
一些人工智能工具应该被禁止
在人工智能领域,存在一些工具应被禁止的情况。例如,欧洲议会和欧盟理事会规定,鉴于人工智能技术可能被滥用,为操纵、剥削和社会控制实践提供强大工具,违背欧盟价值观和基本权利的实践应予以禁止。 在金融领域,摩根大通暂时禁止员工使用 ChatGPT 等类似的外部人工智能工具,戴蒙认为人工智能和数据使用复杂,必须遵守当地法律,这样做既是为了获取好处,也是为了保护公司和金融体系。 人物 Geoffrey Hinton 认同应该限制人工智能,还签署了一份请愿书请求联合国禁止人工智能致命武器,他认为这是可怕的且就在当下。但他也预测人工智能有更好的未来,比如用于医疗诊断等领域。
2025-01-11
怎么在 coze搭建 agent
在 Coze 搭建 Agent 的步骤如下: 1. 梳理手捏 AI Agent 的思路: 在上篇文章中提到过 Prompt 工程的必备能力,即通过逻辑思考,从知识经验中抽象表达出关键方法与要求,这一理念同样适用于在 Coze 中创建 AI Agent。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤:规划、实施、完善。 2. 实施步骤中的搭建工作流框架,设定每个节点的逻辑关系: 首先进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 其中,左侧「选择节点」模块中,根据子任务需要,实际用上的有:插件(提供一系列能力工具,拓展 Agent 的能力边界)、大模型(调用 LLM,实现各项文本内容的生成)、代码(支持编写简单的 Python、JS 脚本,对数据进行处理)。 编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。
2025-01-11
我想自己在 coze 或者类似平台做一个 agent 帮助我们公司的销售提升话术技巧以及 Q&A,我需要在哪里学习怎么搭建
以下是一些关于在 Coze 或类似平台搭建 Agent 以帮助公司销售提升话术技巧及 Q&A 的学习资源和相关信息: 常见的 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售等方面表现出色。 Coze 相关的后续活动筹划:包括 COW 机器人搭建、Coze 搭 Agent 共学等。 Coze 平台的消息卡片系统: 通过高度模块化和图形化操作,支持官方模板、AI 自动生成或手动构建。 相关专业词汇解释:如 Bot 是自动化程序;消息卡片是展示信息的方式;AI 生成卡片是利用人工智能技术自动创建的卡片等。 您可以根据自身需求选择适合的平台进行进一步探索和应用。
2025-01-11
AI是如何产生的,AI是什么
AI(人工智能)的起源最早可追溯到上世纪。1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。 人工智能是一门研究如何使计算机表现出智能行为的科学。例如,对于“根据照片判断一个人的年龄”这类无法明确编程的任务,正是人工智能感兴趣的。 在技术原理方面,相关技术名词众多。AI 即人工智能,机器学习包括监督学习、无监督学习、强化学习。监督学习有标签的训练数据,无监督学习学习的数据无标签。强化学习从反馈里学习。深度学习参照人脑有神经网络和神经元。生成式 AI 可以生成文本、图片、音频、视频等内容形式,LLM 是大语言模型。2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-01-11
数字人
数字人是运用数字技术创造出来的人,虽现阶段不能如科幻作品中的人型机器人般高度智能,但已在各类生活场景中常见,且随着 AI 技术发展正迎来应用爆发。目前业界对其尚无准确定义,一般可根据技术栈分为真人驱动和算法驱动两类。 真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视行业及直播带货,其表现质量与手动建模精细度及动捕设备精密程度直接相关,不过视觉算法进步使在无昂贵动捕设备时,通过摄像头捕捉人体骨骼和人脸关键点信息也能有不错效果。 制作数字人的工具主要有: 1. HeyGen:AI 驱动的平台,能创建逼真数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等。 2. Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,用于教育视频、营销内容和虚拟助手等场景。 3. DID:提供 AI 拟真人视频产品服务和开发,上传人像照片和输入内容,平台的 AI 语音机器人自动转换成语音并合成逼真会说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。使用这些工具时,请遵守相关使用条款和隐私政策,注意生成内容的版权和伦理责任。 以下是一些包含数字人的节目单示例: 1. 猜真人:魔术互动类表演,2 个、8 个数字分身,猜测哪个是真正的我,需求技术为 AI 数字人。 2. 亲情的应用场景(逝者):女儿打扫房间扫到去世父亲的二维码再次对话,涉及 AI 分身的积累准备。 3. AI 转绘:经典电影混剪,涉及短片素材、AI 转绘、Lora 技术。 4. AI 贺岁:晚会中场致谢,包括共创团队记录、新年祝福等。 5. 打工人共情:涉及 AI 素材、共情脚本、炫技视频剪辑。
2025-01-10
如何制作这样的一个AI agent?我可以将所有的文档放在本地或者云盘。
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来,我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 在了解 AI Agent 之前,我们先考虑一个场景:我们要写一本 20 万字的关于人工智能最新技术的书。在没有大模型之前,写书一般会按照如下流程: 1. 先使用搜索引擎搜索一些相关书籍和信息进行阅读,为我们打开思路。 2. 形成本书的大纲,并且考虑清楚每一章节要编写的内容。 3. 针对每一个章节进行内容的编写,在编写过程中可能会调整文章的大纲。 4. 在编写后面章节的时候可能会忘记前面写的内容,需要去翻阅前面已经写的内容。 5. 文章初步完成之后,可能会找相关专业人士帮忙修改。 6. 经过几番调整之后,书籍最终成型。 在大模型出现之后,可能会直接请大模型帮忙生成,但会发现写出来的书根本无法阅读,这不仅仅是因为大模型的能力不行,还因为相比于第一种写书的方式,第二种方式明显缺少了几个环节: 1. 没有办法使用 Google 获取最新的外部信息(大模型的训练数据是有日期限制的)。 2. 没有对整个事情进行规划(比如先写大纲,再编写每个章节,然后和别人讨论,最后成文)。 3. 大模型没有记忆的能力,由于上下文(脑容量)的限制,无法一次性完成 20 万字的文章,会造成前言不搭后语的现象。 而 AI Agent 就是为了解决这个问题。AI Agent 是应用了大模型(LLM)能力的 Agent。以 GPT 为代表的大模型的出现,将 Agent 的能力提高到了前所未有的高度。OpenAI 的 Lilian Weng 将以 LLM 为驱动的 AI Agent,形式化为如下的公式:
2025-01-10
怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?
目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤: 1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。 2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。 3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。 4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
2025-01-10
如何微调大模型
微调大模型主要包括以下几个方面: 1. 理解大模型:大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程,包括找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(微调)和搬砖(推导)。 2. 准备数据集:数据集是让大模型重新学习的知识。例如,对于 Llama3 的微调,可以参考相关文档获取和了解数据集,如下载数据集。 3. 选择微调方式:从参数规模的角度,大模型的微调分成两条技术路线,全量微调 FFT(Full Fine Tuning)对全量的模型参数进行全量训练,PEFT(ParameterEfficient Fine Tuning)只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 4. 进行微调操作:有了数据集后,将其上传到服务器,编写微调代码并执行,大概 15 分钟左右可完成微调。 5. 参考资源:OpenAI 官方微调教程 。 微调的好处包括提高模型在特定任务中的性能和提高模型效率。经过微调的模型可能会失去一些通用性,但对于特定任务会有更好的表现,同时还能实现更低的延迟和成本。
2025-01-10
视频转文字的ai
以下是关于视频相关的 AI 内容: 文字生成视频的 AI 产品: Pika:擅长动画制作,支持视频编辑。 SVD:可在 Stable Diffusion 图片基础上生成视频,是 Stability AI 开源的 video model。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 用 AI 把小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 给视频配音效的 AI 工具: 功能特点: 支持 50 多种语言的配音,音质自然流畅。 提供实时配音功能,适用于直播和演讲。 将语音转录为文本,方便后期字幕制作和编辑。 与多种生产力和学习工具整合。 工具举例: Vidnoz AI: 功能特点:支持 23 多种语言的配音,音质高保真。支持文本转语音和语音克隆功能。提供语音参数自定义和背景音乐添加工具。提供面向个人和企业的经济实惠的定价方案。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-10