Navigate to WaytoAGI Wiki →
Home/All Questions
普通人ai知识怎么学
以下是为普通人学习 AI 知识提供的一些建议: 1. 万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,AI 会给出知识框架,然后针对每个小点继续提问,能帮助您深度思考。 2. 优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息。 3. 信息爆炸做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 4. 零基础小白学习: 网上有很多基础课程,可找科普类教程学习。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。
2025-01-25
coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可以接入抖音评论区,帮您自动回复用户的评论。若想快速上手,可参考视频。若不了解 Coze 是什么,可参考文章。 记账管家:COZE 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,目前可白嫖海量大模型免费使用,有丰富的插件生态。记账管家是基于 COZE 平台的能力搭建的记账应用,您可以直接和 coze 说收入或支出情况,coze 会自动记账并计算账户余额,每一笔记账记录都不会丢失。 技术操作: 获取 accessToken: 在 coze 界面右侧扣子 API 授权,或打开链接 https://www.coze.cn/open/oauth/pats 。 添加令牌,设置 token 的名称和过期时间(最多 1 个月),选择权限,完成后点击“确定”按钮。 最后一定要点击按钮复制下拉,此令牌只会出现一次。 获取 botid: 通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮,查看地址栏中的数字即为 botid。 若在前端使用 bot,必须发布成为 API,点击发布,选择 API,等审核通过后按上述方法拿到 botid。 获取空间 id:进入 coze 后,左边打开工作空间,找到 url 中的 id 并复制。
2025-01-25
当前最强AI模型有哪些?
当前最强的 AI 模型包括: 1. OpenAI 的 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。能够进行自我对话、多角度分析和自我质疑,具备一定的“思考意识”。下一代 o3mini 模型的推理能力能够媲美 o1 模型。 2. Google 的 Gemini 2.0 Flash:在重要的基准能力上直接追平甚至部分超越了 Gemini 1.5 Pro,同时模型速度有极大提升。 3. OpenAI 的 GPT4:是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 4. Midjourney v5:具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 5. DALL·E 3:代表了生成完全符合文本的图像能力的一大飞跃。 6. Mistral 7B:在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,还有智谱·AI 开源的一些模型,如 WebGLM10B、MathGLM2B 等。
2025-01-25
ai写论文
在论文写作方面,AI 技术的应用发展迅速,能提供多方面的辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:借助 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,再修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需注意,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,保证研究质量和学术诚信。 对于担心 AI 削弱孩子思考力的问题,如果用法不对,可能会有负面效果。比如提封闭性问题,孩子用 AI 搜索迅速得到答案结束任务,AI 就像好奇心的毒药;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,好奇心会被激发。AI 辅助写作文也是同理,可让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文点评批改、让其迭代出更好文章,重点关注孩子能否说清作文好坏及如何修改。
2025-01-25
ai生成ppt
以下是关于 AI 生成 PPT 的相关内容: 1. 卓 sir 的方法:先让 GPT4 生成 PPT 大纲,然后将大纲导入 WPS 启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。其中,生成符合要求的大纲最费时间,还借助 GPT4 理解题目意思,并解决了对电商企业属性不了解的问题。 2. 雪梅 May 的体验:体验了 gamma、AIPPT、islide AI 生成 PPT 的产品,认为 gamma 最好用,只要提供内容框架,生成的 PPT/网页审美水平最高。 3. 熊猫 Jay 的思路:以爱设计为例,基于 Markdown 语法的内容生成 PPT,然后按照公司要求优化字体、图片等元素,可对下载后的 PPT 删改内容以达到预期。
2025-01-25
ai写论文
在论文写作方面,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需注意,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,保证研究质量和学术诚信。 对于担心 AI 削弱孩子思考力的问题,如果用法不对,可能会有负面效果。比如提封闭性问题,孩子用 AI 搜索迅速得到答案结束任务,AI 就像好奇心的毒药;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,好奇心会被激发。AI 辅助写作文也是同理,可让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文点评批改、让其迭代更好的文章,重点关注孩子能否说清作文好坏及如何修改。
2025-01-25
微软的AI方面的投资
微软在 AI 方面进行了大量投资。 首先,微软巨额投资了 OpenAI,但 GPT4 并非微软完全自有。微软未将大部分投资的算力直接给 OpenAI 使用,且不久前完成了对 Inflection AI 的收购,准备利用其专业团队和数据集,加上自身合成数据,从头训练一个约五千亿参数规模的 MOE 模型 MAI1。 其次,微软最初向 OpenAI 出资 10 亿美元,以服务器上的计算时间作为回报,随着双方信心增强,交易规模不断扩大,目前微软已向 OpenAI 投入 130 亿美元。 此外,在 2019 年,微软投资 10 亿美元给 OpenAI 成为其最大的机构股东。
2025-01-25
我想跟踪微软的动态
以下是微软的相关动态: 1 月 3 日: 微软研究团队利用合成数据训练 AI,减少成本和偏见,生成 100 种语言的文本数据提高训练效率,论文链接:https://arxiv.org/abs/2401.00368 ,https://x.com/xiaohuggg/status/1742473942252855795?s=20 。 微软推出 Microsoft 365 Copilot Chat 基础版支持 GPT4o,功能包括联网查询、文档处理、内容制作等;高级版支持创建 AI 代理,提升 CRM 和实时服务效率。无缝连接 Office 系列工具显著提高生产力。 。 1 月 17 日: 微软推出 Microsoft 365 Copilot Chat 基础版支持 GPT4o,功能包括联网查询、文档处理、内容制作等;高级版支持创建 AI 代理,提升 CRM 和实时服务效率。无缝连接 Office 系列工具显著提高生产力。 。 Microsoft Build 2024: 发布包括大杀器 Copilot Studio 在内的 50+项更新。 硬件层面:与英伟达、AMD 合作,推出新芯片 Cobalt 。 生态层面:与众多模型生态合作,推出 Phi3vision 多模态小模型,更新 Azure AI Studio 。 数据层面:Fabric 支持实时智能。 工具链层面:GitHub Copilot 迎来 Extension 。 应用层面:推出 Copilot Team 和 Copilot Studio 。
2025-01-25
我是一个新手,不知道从何学起
对于新手学习 AI,建议您按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-25
ai量化交易
以下是关于 AI 量化交易的相关信息: 11 月 9 日至 10 日在文三路数字生活街区举办的“AI 切磋大会”中,现场有 106 个摊位,其中包括 AI 量化交易相关的摊位。 摊位信息: 摊位主题:AI+交易:来定制专属于你的私人高级交易顾问吧! 摊位区域:D 摊位编号:22 摊位类型:量化交易 预训练大模型与金融量化: 大多数量化算法的核心数据和大模型预训练的数据中最重要的部分都是公开数据,各家也会有一些独有数据来源,但占比不大,整体算法逻辑类似,决定模型能力好坏的是大型系统工程能力。 作为大型系统工程,量化和大模型都需要大型计算集群,量化对性能和效率有极致追求,大模型在 infra 层面的提升能带来训练效率优化。 细节在大型系统工程中十分关键,量化交易系统包含交易执行、风控等多个方面,任何一个环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等都对模型结果有重要作用。
2025-01-25