直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何使用AI进行中学历史教学

回答

以下是一些使用 AI 进行中学历史教学的方法和案例:

  1. 利用 GPT 生成“沉浸式”历史片段游戏,让学生扮演角色“设身处地”做决策,例如模拟明朝灭亡时期在南京的情境。学生的作业可以是找出 GPT 生成内容中的错误。
  2. 在历史课中,学生可以使用 AI 生成图像制作信息图表来展示对宏观经济学原理的理解。
  3. 借助 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。例如像 PeopleAI 和 Historical Figures 这样的应用通过模拟与杰出人物的聊天来教授历史。
  4. 学生在作业中利用像 Grammarly、Orchard 和 Lex 这样的 AI 助手来克服写作难题,提升写作水平。处理其他形式内容的产品如 Tome 和 Beautiful.ai 也可协助创建演示文稿。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

教育:一个历史老师用GPT给学生讲课

推荐一篇文章,一个历史老师用GPT给学生讲课,https://resobscura.substack.com/p/simulating-history-with-chatgpt亮点有两个:1、通过GPT生成一个"沉浸式"历史片段游戏,让学生扮演一个角色"设身处地"的做决策。2、学生的作业是找出GPT的错误。可以试试这个案例,明朝灭亡,南京,1645年5月(GPT3.5)https://chat.openai.com/share/86815f4e-674c-4410-893c-4ae3f1b7412e/continue(文科生未来的作业越来越难了)英文版本:Since January of 2023,I’ve been experimenting with using large language models(LLMs)like ChatGPT as a teaching tool in my history classes at UC Santa Cruz.I’ve been thinking about the implications of AI in teaching since I first began using GPT-2 back in 2019.I have also been following along avidly as my wife[Roya Pakzad](https://www.royapakzad.co/)works on testing the human rights impacts of AI systems(Roya was a consultant for OpenAI in 2022,where she served on the“red team”for adversarial testing of a pre-release version of GPT-4;you can read her account of that work[here](https://royapakzad.substack.com/p/old-advocacy-new-algorithms)).What follows are some thoughts about what I believe to be a novel use of LLMs:using them to simulate interactive historical settings as part of a university assignment.The results of these early trials are why I am personally much more excited about generative AI than many of my colleagues—though I also concede that in the short term,cheating will be a major problem.

他山之石|如何防止AI取代人类思考一切?

If you’re teaching an art class,you might not want AI-generated images but you might embrace AI-generated images in a history class where students work on making infographics to demonstrate their understanding of macroeconomics principles.It might feel like cheating for a student in a film class to use AI for video editing but the AI-generated jump cuts might save loads of time in a science class where students demonstrate their learning in a video.In a film class,it’s critical for students to learn how to edit by hand in order to tell a story.In science,AI-generated jump cuts allow students to create videos quickly so they can focus on the science content.I also want to recognize that some of what students learn can and will become obsolete.I’m pretty sure I didn’t actually need to memorize the state capitols,for example.Which leads me to the next question...But What If We Don’t Need That Skill Anymore?I grew up in an era where teachers were moving away from memorization.We still had to memorize math facts and,for some reason,state capitols.I’ve never visited a state and thought,“Man,I really need to see the capitol.”If I’m Nevada,I’m not like,“Screw Vegas,I’m going to Carson City!”But,for the most part,we had moved past memorization.We were now in a largely print-based culture and memorization just wasn’t too important anymore.For many people,this tradeoff is a good thing.Why memorize it if you can access the knowledge with technology?However,when I was in college,I decided to memorize key texts that I wanted with me at all times.I memorized Bible verses and Shakespearan stanzas.I memorized an ee cummings poem and a quote from bell hooks.I memorized Stoic passages and the every word of the Bill of Rights.

生成式 AI:下一个消费者平台

教育科技长期以来一直在有效性和规模之间做权衡。为大众打造有效的解决方案,就会失去吸引个体的个性化。为满足个体的需求而打造完美的解决方案,却又难以扩展。有了AI,这种状况不再存在。我们现在可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,这个老师理解他们独特的需求,并可以回答问题或测试他们的技能。想象一个由AI驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。[Speak](https://www.speak.com/)、[Quazel](https://www.quazel.com/)和[Lingostar](https://www.lingostar.ai/)已经在做这样的事情!我们已经看到了教授新概念或帮助学习者在几乎所有学科中“摆脱困境”的产品。像[Photomath](https://photomath.com/en)和[Mathly](https://mathly.webflow.io/)这样的应用指导学生解决数学问题,而[PeopleAI](https://chatbotkit.com/apps/peopleai?ref=theresanaiforthat)和[Historical Figures](https://twitter.com/scottbelsky/status/1611244139764649991)通过模拟与杰出人物的聊天来教授历史。除了学习特定的科目,学生们还在他们的作业中利用AI助手。像Grammarly、[Orchard](https://orchard.ink/)和[Lex](https://lex.page/~)这样的工具帮助学生克服写作难题,并提升他们的写作水平。处理其他形式内容的产品也在全国各地的中学和大学中越来越受欢迎——例如,[Tome](https://beta.tome.app/)和[Beautiful.ai](https://www.beautiful.ai/)协助创建演示文稿。了解更多关于[AI时代学习的未来](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)。

其他人在问
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
学的理论模型如何高效指导实践,在教学中
在教学中,关于如何让学习的理论模型高效指导实践,以下是相关内容: 本系列课程是由 Deeplearning 联合谷歌 Gemini 团队开发的免费在线课程,以 Gemini 模型作为教学模型,教授如何使用多模态提示词与模型交互。但课程内容在国内存在部分无法应用的情况,且缺乏某些概念。因此,对部分教程内容进行了重新整理和刊发,并适当混合了一些入门概念,以增强普世价值。(如有需要,请访问) 在本节课程中您可以学到: 通过实践,与视频内容交互,辅助工作与学习。 通过实践,学习 Function Calling 概念与实际应用。 扩展阅读: )
2025-04-13
有哪些最新的ai技术可用在课堂教学上
以下是一些可应用在课堂教学上的最新 AI 技术: 1. 智慧技术助理:为教师提供辅助,帮助教师在课前、课中、课后呈现新的教学样态,驱动学生高效和差异化学习。 2. 生成式人工智能:可用于为教师减负,例如辅助设计教学内容、生成提示词等。 3. 个性化学习支持:通过 AI 技术实现对学生的个性化学习支持,如智能评估学生的学习情况,为每个学生提供定制化的学习方案。 4. 教育过程和结果的结构化表征:利用 AI 进行分析,帮助教师更好地了解学生的学习过程和结果。 5. 多维度数据采集与评价:AI 可以整合行为、情感、认知等多维度数据,为学生绘制发展全景图,实现更全面的教育评价。 需要注意的是,AI 在教育中是“助手”而非“替代”,教师应充分利用这些成熟的技术促进教育变革。
2025-04-13
自媒体文章创作提示词教学
以下是关于自媒体文章创作提示词教学的相关内容: 一、宝玉日报中的提示词教学 1. 提示词四要素包括指令、上下文、输出格式、角色。明确表达需求,学会结构化 Prompt,能让 AI 效果立竿见影。 2. 相关链接: 二、工具教程:清影中的提示词优化原则 1. 强调关键信息:在提示的不同部分重复或强化关键词有助于提高输出的一致性。 2. 聚焦出现内容:尽量让提示集中在场景中应该出现的内容上。 3. 规避负面效果:在提示词中写明不需要的效果,保障视频生成质量。 写提示词的步骤: 1. 明确场景中的人物和冲突,这是推动场景发展的关键因素。 2. 对场景进行详细描述,包括地点、人物形象、任务动作等细节,使用生动的动词营造动态和戏剧化氛围。 3. 加强镜头语言,常用的镜头运动包括推、拉、摇、移、升、降等,每种镜头运动都有其特定作用和效果。 三、关于律师如何写好提示词用好 AI 1. 第一部分:说清楚本文要解决的问题、问题的背景以及可能导致的损失。 2. 第二部分:以案例引入,案例需改写自【基础材料】的【类案参考】部分,包括案号、案件事实经过、法院裁判结果、关键依据等与文章有关的要点。 3. 第三部分:对案例进行进一步分析,写明需要注意的关键点,分析可改写自【基础材料】的【问答结果及分析】部分,这部分不要给建议。 4. 第四部分:给出具体的操作建议,分为事前应注意事项、事中需要注意留存的证据、事后可以采取的补救措施三个部分,每个部分分别给出三条清晰具体的建议。 5. 第五部分:结语及对于本文作者的宣传。 文章结构要点: 1. 定义身份(边界),整体流程和所需资源描述。 2. 对所需资源及如何使用进行描述。 3. 对最终输出的结果进行描述。 注意事项: 1. 所有结论均应有相对应的案例基础,不能违反法律规定,不能编造。 2. 文字需要简练精准,有足够的信息密度,给出的建议必需具体细致且易于操作。
2025-04-12
AI办公相关的课程、软件教学
以下是为您提供的 AI 办公相关的课程和软件教学资源: 1. 90 分钟从 0 开始打造您的第一个 Coze 应用: 课程包含从零开始的应用界面教学,涉及过年相关应用。 介绍了当前承接的业务,包括辅导、培训、定制及企业 AI 落地等。 提到 11 月底应用推出背后的情况,包括社区对 AI 应用的呼声和功能需求挖掘。 2. AI 视频的软件教程: 涵盖了众多工具,如剪映、Dreamina、Pika、StableVideo、Pixverse、morphstudio、Runway Gen3、Adobe Firefly 以及清影等。 3. 张翼然:用 AI 为教师减负(3H).pdf: 包括教师的 AI 减负指南,生成式人工智能在教学中的应用。 介绍了教师使用 AI 的小技巧,如提示词设计公式之——RTFC。 涉及使用 AI 生成图片的方法与注意事项,AI 自动生成 PPT 功能。 展示了通过小程序实现文字与声音、视频的转化,自定义数字人形象进行教学。 展示了便捷的课堂教学工具与 Ai 课件制作,探讨了 A 生成视频与手工制作视频的教学效果差异。 强调了教育资源与版权问题,教师能力重塑,极简思维的教育应用,生成式 AI 教学策略。 包括 AI 技术助力教育管理和辅助教学实践,如班级与学校管理中的行政职日流程简化、听课记录自动化等。
2025-04-12
ai在教学中的最新应用
以下是 AI 在教学中的一些最新应用: 1. MIT 为孩子开设免费的 AI 课程,涵盖了 AI 在跨学科领域的应用,如 AI 与气候、AI 与大学录取、AI 对美国大选的影响等。孩子们需要思考如何用气候数据写好故事、预测气候变换走向,从数据分析角度了解大学录取中的相关问题,以及识别 AI 深度伪造的新媒体材料等。 2. 张翼然提出用 AI 为教师减负,为有初步 AI 使用经验、渴望了解最新技术进展并交流的老师提供了相关技巧和分享。例如,在智慧技术助理加持下探索教学新样态,分享全球 AI 技术在教育界的新发展和应用案例。 3. 从 AI 助教到智慧学伴的应用探索中,提出调整教学理念,将 AI 作为教学辅助工具和合作伙伴。学习利用 AI 工具的优势应用于教学,如自动生成练习、个性化反馈等,同时确认输出质量。根据 AI 能力设计开放性作业,调整考核方式,继续发挥教师在提供情感支持、培养团队合作等方面的优势。
2025-04-11
ai中学生学习平台有哪些
以下是一些适合中学生学习 AI 的平台和工具: 1. 编程语言学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. AI 生成工具和平台:如 ChatGPT、Midjourney 等,体验 AI 的应用场景。也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 个性化学习平台:例如 Knewton 平台,利用数据分析构建个性化学习路径,精准预测学习难点并提供解决方案,提升学习效率。 4. 自动评估工具:如 Pearson 的 Intelligent Essay Assessor,通过自然语言处理技术自动批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 5. 智能辅助教学工具:如 Google 的 AI 教育工具 AutoML,创建定制学习内容,提高学习动机和知识掌握程度。 6. 虚拟现实和增强现实平台:如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并得到即时反馈。 7. 语言学习平台:如 Speak、Quazel、Lingostar 等,能够实时交流并给予发音或措辞反馈。 8. 学科学习应用:如 Photomath、Mathly 指导学生解决数学问题,PeopleAI 和 Historical Figures 通过模拟与杰出人物聊天教授历史。 9. 写作辅助工具:如 Grammarly、Orchard、Lex 帮助学生克服写作难题,提升写作水平。 10. 内容处理工具:如 Tome、Beautiful.ai 协助创建演示文稿。
2025-03-18
我指的是用AI来辅助小红书内容的优化方面,我应该在WaytoAGI中学习什么内容?
在 WaytoAGI 中,您可以学习以下与用 AI 辅助小红书内容优化相关的内容: 1. 智能纪要中的数据转化与创作提示词工具:包括从数据到模型的转化过程,以及基于 AGI 特调的生成 MJ 和 SD 提示词的工具扣子,还有利用这些工具生成山海经神兽等创作提示词的方法和迭代优化方式。 2. 人文数据转化的不同层面:了解数据转化成模型的结构过程和情感层面的结构,以及人类世界人文价值对齐翻译对 AI 发展的重要性。 3. 关于神兽提示词创作及相关工具的交流:如社区建立种子群收集知识库,推荐表现力好的提示词组等。 4. 相关社区及平台的介绍:例如嘟嘟社区的现状,以及在队友平台上跑效果图等。 5. 开展的创作挑战活动:如 10 分钟神兽提示词创作挑战,包括挑战方式、成果检验和配方获取等。 6. 第 11 期 Video Battle AI 视频挑战活动:包括选题参考,如 AI 视频领域国内外近期热点话题事件、技术工作流拆解等;话题要求,如小红书内容文案需附特定字样和带特定标签;大赛主题和创意支持,以及视频工具建议等。 希望以上内容对您有所帮助。
2025-03-07
我想从实践中学习coze,应该如何开始?
以下是从实践中学习 Coze 的一些建议和步骤: 1. 利用 Cursor+Coze 工作流打造网页内容提取插件: 开发时要具备架构思维,懂得向 AI 描述需求。 获取授权令牌(Token),掌握工作流调用方法。 查看 coze 的 api 开发文档,获取工作流的开发文档、个人令牌和工作流 id。 让 Cursor 根据相关内容写调用 coze 工作流的服务,注意声明入参和中文编码。 完成后用 chrome 加载做好的插件,并优化界面。 2. 用 Claude+Coze 学习 RAG: 通过 Claude 了解细节概念,再通过 Coze 搭建 Demo,在动手实践中学习。 在学习过程中创建相关 Bot,如产品资料问答机器人、Query 改写助手学习 Bot 等。 3. 分步构建和测试 Agent 功能: 进入 Coze,点击「个人空间工作流创建工作流」,自定义工作流信息。 左侧「选择节点」模块中,根据子任务需要选择插件、大模型、代码等节点。 按照流程图在编辑面板中拖入对应的节点完成工作流框架搭建。
2025-02-28
中学教师如何学习AI,以方便教育教学
中学教师学习 AI 以方便教育教学可以从以下几个方面入手: 1. 获取信息和自学:可以利用人工智能来解释概念,例如通过相关提示获得类似自动导师的帮助,如的直接链接来激活 ChatGPT 中的导师。但要注意因人工智能可能产生幻觉,关键数据需根据其他来源仔细检查。 2. 课堂应用: 输入书上例题,让 AI 生成新颖解法,引发学生思考。 进行交互式学习,随时要求解释关键代码并举例,为学生提供支架。 利用人工智能分担低阶认知,让人有精力投入高阶认知加工,但要注意对思维训练的引导,提高对学生表现的要求,关注和引导“偷懒”学生。 3. 个性化学习计划:借助 AI 大规模部署个性化学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。例如像 Speak、Quazel、Lingostar 等已经在做这样的事情。 4. 学科学习辅助:利用相关应用帮助学生学习特定科目,如 Photomath、Mathly 指导数学问题,PeopleAI、Historical Figures 模拟与杰出人物聊天教授历史。 5. 作业辅助:使用工具如 Grammarly、Orchard、Lex 帮助学生克服写作难题,提升写作水平。处理其他形式内容的产品如 Tome、Beautiful.ai 可协助创建演示文稿。 您还可以了解更多关于。
2025-02-25
作为一名中学教师,怎么通过Ai工具将教材内容生成教案和ppt
以下是为您提供的通过 AI 工具将教材内容生成教案和 PPT 的方法: 1. 使用 COZE 应用 访问地址:https://www.coze.cn/s/iDsBwYLF/ 首页说明:启动页面有相关介绍。 生成教案:进入设计教案页面,等待执行完成后即可获得教案,教案是其他功能的基础。 趣味课堂:根据课文内容设计课堂问答卡和教学活动,采用寓教于乐的方式激发孩子学习兴趣。 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作等。 教案 PPT:PPT 内容基于生成的教学大纲,可能需要手动进行少许内容修正。若对大纲内容不满意,可重新生成大纲和 PPT。首先复制大纲内容,打开 kimi,选择 PPT;然后复制教案,在对话框粘贴,KIMI 会优化大纲,点击进去后选择喜欢的模版生成。但需注意,PPT 预览与下载可能需要充值。 2. 参考教师使用 AI 小技巧 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT 时,让 AI 帮忙摘要内容,生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。 在特定场景下可直接使用,如学生快速为小组展示配 PPT。 一些 PPT 生成工具(网站): https://wenku.baidu.com :百度文库,付费,质量好。 https://zhiwen.xfyun.cn/ :讯飞智文,免费,引导好。 http://Chatppt.com :付费,自动化程度高。 http://Mindshow.fun :支持 Markdown 导入。 http://Gamma.app :支持 Markdown 导入。 http://Tome.app :AI 配图效果好。 剪映:图文成片,只需提供文案,自动配图配音。
2025-02-06
openai中学生写作的建议
以下是 OpenAI 针对中学生写作的一些建议: 1. 写作过程分为五个阶段:前期调研、框架构建、论证深化、反馈改进和调整格式。 2. 包含 12 条具体建议,如快速了解主题、创建反向大纲、寻求反馈和规范引用等技巧。 3. 强调将 AI 作为思维的催化剂,而非替代品。 4. 获得更好结果的六种策略: 写清楚说明:包括在问题中包含细节以获取更相关的答案、要求模型采用一个角色、使用分隔符清晰地表示输入的不同部分、指定完成任务所需的步骤、提供示例、指定期望的输出长度。 提供参考文本:指示模型使用参考文本回答、指示模型使用参考文本中的引用来回答。 将复杂任务拆分成更简单的子任务。 给 GPT 时间「思考」。 使用外部工具。 系统地测试更改。
2025-01-10
AI历史
AI 技术的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等兴起。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。此后近 70 年,AI 的发展起起落落。
2025-04-15
给我找一些介绍ai发展历史的文章。
以下是为您找到的关于 AI 发展历史的相关内容: 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,自此开始,一股 AI 浪潮席卷全球,但 AI 并非近几年才出现。其起源最早可追溯到上世纪的 1943 年。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。 1956 年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能(Artificial Intelligence)一词被正式提出,并作为一门学科被确立下来。 此后接近 70 年的漫长时间里,AI 的发展起起落落,两次掀起人类对 AI 毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。 此外,知识库中还整理了 OpenAI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-26
AI绘画的历史与发展
AI 绘画的历史与发展如下: 早期,AI 绘画成果较为简单粗糙。但随着技术进步,尤其是深度学习算法如卷积神经网络的应用,其能够生成更复杂、逼真和富有创意的图像,涵盖各种风格和题材,从写实到抽象,从风景到人物。 AI 绘画在与人类艺术家的互动和融合中不断创新,为艺术创作带来新的可能性和挑战。它从生成艺术作品到辅助艺术创作,逐渐改变着传统艺术的面貌。 AI 技术在艺术创作中的应用不仅改变了创作方式,还对艺术的审美观念和市场需求产生影响。一方面,人们对 AI 驱动的机器人创作的艺术品和人类创作的艺术品接受程度大致相同,但不太愿意将机器人视为艺术家,这表明其在表达情感和创造性意图方面存在局限性。另一方面,艺术家对 AI 生成艺术的态度复杂,既有期待也有对版权、原创性和伦理问题的担忧。 此外,AI 绘画技术的发展带来了对文化创意领域从业者职业安全的焦虑,以及对其“侵权”嫌疑的反对之声,反映了新技术发展带来的行业生态变化和对现有法律伦理框架的挑战。 尽管存在争议,AI 在艺术领域的应用为艺术创作提供了新的工具和可能性,帮助艺术家探索新的创意表达方式,提高制作效率,降低制作成本,促进艺术与观众之间的互动,提供更加个性化和互动的艺术体验。 艺术与科技的融合正呈现出前所未有的奇妙景象,AI 绘画作为杰出代表,将艺术与先进技术完美结合,开启探索之旅,引领艺术界走向未来。艺术创作通常依赖手工技艺和个人感悟,而 AI 绘画利用机器学习和深度学习等技术,模拟人类创作过程,生成令人惊叹的作品,为艺术家提供新工具,为观众带来新体验,打破了传统创作的局限,使艺术更加民主化和包容。
2025-03-22
请介绍一下中国AI发展历史
中国 AI 的发展历史可以追溯到二十世纪中叶。 最初,AI 领域的符号推理较为流行,也取得了一些重要进展,如专家系统。但由于从专家提取知识并以计算机可读形式表现和保持知识库准确性的任务复杂且成本高,20 世纪 70 年代出现了“人工智能寒冬”。 对于大众来说,对 AI 领域的使用在近 20 年随着国内互联网的发展才开始普及。最初的应用主要是基于 NLP 技术的聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中的应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但此前这些技术突破大多限于特定领域,模型应用范围相对狭窄。 近年来,随着计算资源变得更便宜、可用数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。在过去十年中,“人工智能”一词常被用作“神经网络”的同义词。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT ,引发全球 AI 浪潮。AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。
2025-03-18
AI的发展历史
AI 的发展历史如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论等。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。 最初,符号推理流行,带来了专家系统等重要进展,但因方法局限,20 世纪 70 年代出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2025-03-17
AI的历史
AI 作为一个领域始于二十世纪中叶。 早期,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确性的任务复杂且成本高,应用场景难以大规模拓展,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 AI 技术的发展历程包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有: 1. 大模型(Large Language Models):GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽先进,但仍遵循相同受控计算理念。但有些任务如根据照片判断人的年龄,无法明确编程,这正是 AI 感兴趣的。
2025-03-11