直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
在办公场景下,如何使用AI,让我办公效率更高
在办公场景下,以下是一些使用 AI 提高办公效率的方式: 1. 产品经理方面:使用 GPT 解决性能差和历史数据存档的问题,可将最终的 SQL 执行时间大幅缩短,提升效率并降低复杂度,同时保存所有历史数据,实现报表秒开。 2. 运营方面:将 ChatGPT 视为日常工作的辅助工具,顺应技术发展趋势,借助其提升工作效率。 3. 营销方面:探索 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程;定制营销报告时,考虑汇报对象身份、销售数据、财务报告等多方面因素。 4. 办公方面:用 ChatGPT 生成 Markdown 语法的内容,再借助 MindShow 工具转换为精美的 PPT。 此外,还有一些 AI 应用也能助力办公,比如: 1. 豆果美食 APP:能根据用户口味和现有食材生成个性化菜谱。 2. 沪江开心词场:辅助用户学习语言,提供个性化学习方案。 3. 爱奇艺智能推荐:根据用户喜好推荐电影,帮助发现优质影片。 4. WPS Office:利用智能排版、语法检查等功能,提高办公效率,实现自动化办公流程。
2024-12-18
超融合架构与AI
超融合架构与 AI 相关的知识如下: 在融合 RL 与 LLM 思想方面: AI 本质上是一堆 scaling law,当前能看到的最好模型规模在 10 的 25 到 26 次方 FLOPs 且规模还会持续增长,算力是必要条件。 需要同时满足 scalability 和 generality 的架构,如 transformer 在已知 token space 符合部分条件,但在更通用场景不太符合。 未来可能会利用用户数据源的 scaling law,alignment 也有 scaling law,只要找到对的数据就能解决。 一个值得被 scale up 的架构是基础,要支持不断加入更多数据,数据会成为瓶颈,如文本模态在 2024 年可能遇到,多模态数据引入可推迟 1 2 年。 在面向智能的架构方面: 包括为 Machine Learning 优化的高性能芯片,如 Nvidia 的 H100 Tensor Core GPU 和 Google 的 TPU,内置多计算核心和高带宽内存(HBM),可高度并行化执行神经网络计算。 能够完全发挥硬件效率的系统软件,如 Nvidia 推出的 CUDA 可直接访问 GPU 的虚拟指令集,执行内核级别的并行计算。 用于训练和推理的分布式计算框架,可有效地跨多个节点扩展模型的训练操作。 数据和元数据管理系统,为创建、管理、训练和预测数据而设计。 极低延迟的服务基础设施,使机器能够快速执行基于实时数据和上下文相关的智能操作。 Machine Learning 持续集成平台(MLOps)、模型解释器、质保和可视化测试工具,可大规模监测、调试、优化模型和应用。 封装了整个 Machine Learning 工作流的终端平台,抽象出全流程的复杂性,易于使用。 在 Q猜想方面:当前各界有很多关于 Qstar 猜想的文章或论文发表,结合核心要点内容,通往 Qstar 可能通过 LLMs 融合 RL 的方法实现,这需要大量复杂的前期数据准备工作,也是为 super alignment 做必要准备,前期数据工程相关工作挑战巨大,OpenAI 常采用简单暴力的方法解决,但目前情况未知。
2024-12-18
AI 提示词如何写的更好?应该使用什么格式书写?
以下是关于如何写好 AI 提示词及格式的相关内容: 1. 陶力文律师的观点: 结构化内容组织:使用编号、子标题和列表来组织文章,使内容条理清晰,易于读者理解。 规定概述内容解读结语结构:围绕主题展开讨论,首先概述规定内容,然后逐条解读具体内容,并以结语结束。 案例和挑战的结合:通过引入实际案例和潜在挑战,增强论点的说服力,并提供实用的解决方案。 结合法规和实际操作:通过引入法规内容和实际操作案例,提供详细的解释和建议。 商业术语的使用:在写作中融入行业特定的术语和概念,确保内容的专业性和针对性。 输出的文章结构: 标题:开门见山、切中要害,用疑问句引起目标群体悬念。 第一部分:说清楚本文要解决的问题是什么,问题的背景是什么,这个问题可能导致哪些损失。 第二部分:以一个案例引入,这个案例改写自【基础材料】的【类案参考】部分,需要写清楚案号、案件事实经过、法院裁判结果、法院作出这一裁判结果的关键依据和其他与文章有关的要点。 第三部分:对案例进行进一步的分析,写明需要注意的关键点,分析可以改写自【基础材料】的【问答结果及分析】部分,这部分不要给建议。 第四部分:给出具体的操作建议,应分为:事前应注意事项;事中需要注意留存的证据;事后可以采取的补救措施,三个部分;每个部分分别给出三条清晰具体的建议。 2. 潘帅的观点: Prompt 指的是给人工智能(AI)系统提供的信息或者问题,用来引导 AI 产生特定的回答或者执行特定的任务。 Prompt 的建议框架及格式: CRISPE: Capacity and Role(能力与角色):比如,你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):比如,处理一起复杂的合同纠纷案件,我们可以向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):比如,直接明确期望 AI 完成的任务是什么。以合同纠纷案件为例,我们可以要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):比如,你希望 AI 以什么风格或方式回答你。 Experiment(举例)。 3. 陈财猫的观点: 一个效果很好的 prompt 不需要很多奇怪的格式,自然语言是最好的方式,人好懂,机器就好懂。 厂商有在前端显示排版的需求,模型会比较熟悉 markdown,写点 markdown 是不错的。Claude 对 xml 格式做了点优化,GPT 对 json 做了点优化等等。
2024-12-18
有没有AI换头工具
以下是一些关于 AI 换头工具的信息: 实战方法: 打开快捷工具中的 JupyterLab,通过终端启动 facefusion。具体操作包括:点击顶部的“+”号选项卡打开新的终端窗口,在终端区域输入命令查看文件列表(输入“ls”并回车)、进入 facefusion 目录(输入“cd facefusion 并回车”)、启动 facefusion(输入“python./run.py executionproviders cuda cpu”)。注意后面的参数“executionproviders cuda cpu”非常重要,不加“cuda”默认不使用 GPU 能力,推理会很慢。 打开 facefusion 软件,返回实例列表,点击自定义服务按钮,通过新的浏览器窗口访问其 UI 界面,上传准备好的图片、视频,在右侧可看到预览效果,点击开始按钮执行换脸处理,处理完成后在输出位置下载处理后的视频。 辅助工具: Face Swapper:AI 换脸工具,可一次替换多张脸,支持 JPG、PNG、WEBP 格式,最大 1024px 分辨率,应用场景包括时尚、美容、电影、媒体、人力资源。传送门: 开源免费的解决方案 facefusion: 开源地址:https://github.com/facefusion/facefusion 本机解决方案:需要 Python 环境及安装视频解码器等多个依赖软件,对编程知识有一定要求,且运行推理计算速度依赖 GPU,本地计算机若无 GPU 或 GPU 显存较小,执行速度慢,不推荐本地化安装。 云服务解决方案:可利用云厂商如阿里云的 PAI 和 AutoDL 已提供的大模型运行环境和计算能力,如选择 AutoDL,其官网是:https://www.autodl.com/home 。注册后在算力市场中选择能接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。在算法社区查找 facefusion 镜像,点击右侧合适的镜像创建并启动实例。
2024-12-18
建模相关的AI软件
以下是一些可以用于绘制逻辑视图、功能视图、部署视图的 AI 软件和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-12-18
建模相关的AI软件
以下是一些可以用于绘制逻辑视图、功能视图、部署视图的 AI 软件和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-12-18
建模AI
以下是一些与建模 AI 相关的术语: 生成对抗网络(Generative Adversarial Network) 生成方法(Generative Approach) 生成式模型(Generative Model) 生成式建模(Generative Modeling) 生成矩匹配网络(Generative Moment Matching Network) 生成式预训练(Generative PreTraining) 生成随机网络(Generative Stochastic Network) 生成权重(Generative Weight) 生成器(Generator) 生成器网络(Generator Network) 遗传算法(Genetic Algorithm) 几何间隔(Geometric Margin) 基于模型的迭代重建(ModelBased Iterative Reconstruction) 模型构建(ModelConstruction) 建模场景(Modelling Scenario) 分子图论(Molecular Graph Theory) 分子建模(Molecular Modelling) 蒙特卡洛树搜索(Monte Carlo Tree Search) 摩尔定律(Moore’S Law) 基于人工神经网络组合的结构生物学效应定量关系多尺度模型(msQSBEREL Model) 多智能体控制系统(MultiAgent Control System) 多核台式计算机(MultiCore Desktop Computer) 多维度大数据分析(MultiDimensional Big Data Analysis) 机器学习算法(ML Algorithm) 机器学习建模(ML Modelling) 机器学习势能(ML Potentials) 机器学习驱动的(MLDriven) 机器学习驱动的最优化(MLDriven Optimization) 多层感知机神经模型(MLP Neural Model) 模型构建(Model Construction) 模型评估(Model Evaluation) 模型性能(Model Performance) 模型统计(Model Statistics) 模型训练(Model Training) 模型验证(Model Validation)
2024-12-18
如何入门ai
以下是入门 AI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于不会代码的朋友,20 分钟上手 Python+AI 的方法如下: 1. 了解背景: Python 就像哆拉 A 梦,拥有标准库这个百宝袋,若不够用还可通过 pip 工具从类似 GitHub 的平台订购新道具,且在 AI 领域被广泛使用。 OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的代码调用服务。 2. 完成任务: 在 20 分钟内,循序渐进完成一个简单程序、一个爬虫应用抓取公众号文章、一个为公众号文章生成概述的 AI 应用。 另外,入门强化学习可参考以下内容: 明确学习目的,如以搞懂 DQN 算法作为入门目标。 可参考相关资料,如 https://github.com/ty4z2008/Qix/blob/master/dl.md 。
2024-12-18
GAN生成对抗网络
GAN 生成对抗网络是一种无监督的生成模型框架,通过让两个神经网络相互博弈来进行机器学习。它具有以下特点和应用: 特点: 能够生成视觉逼真度高的视频。 控制难度大、时序建模较弱。 与 VAE 变分自编码器、Transformer 自注意力机制等相比,GAN 生成视频速度快,但生成质量和分辨率较低,长度短,控制能力弱。 应用: 可以帮助神经网络用更少的数据进行学习,生成更多的合成图像。 有助于创建图像,还可以创建现实世界的软件模拟,如 Nvidia 大量采用这种技术来增强其现实模拟系统。 同时,当前端到端视频生成仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。针对这些问题,可使用渐进生成、增强时序一致性的模型等方法,以及上述的补帧算法、视频完善策略来在一定程度上缓解。
2024-12-18
GAN
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合了检索和生成的技术。 AI 大模型在生成文本时,其知识通常基于训练时使用的公开数据。若想构建能利用私有数据或实时数据进行推理的 AI 应用,就需要特定信息来增强模型知识,这便是 RAG。 RAG 的基本流程为:首先,针对用户输入(如问题或话题),从数据源(如网页、文档、数据库记录)中检索出相关文本片段,这些片段称为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。最后,从大模型输出中提取或格式化所需信息返回给用户。 RAG 由检索器和生成器两部分组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-12-18