直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
AI赋能影视创作流程
以下是 AI 赋能影视创作的流程: 在分镜管理方面: 导演使用增强现实界面来规划场景和指导演员,增强现实技术让导演能直观地设计和预览复杂场景。 编剧通过 AI 助手生成剧本创意和对话,人工智能成为编剧的新伙伴,激发创意,优化叙事。 观众通过脑机接口直接体验电影情感和场景,脑机接口技术可能将观众带入完全沉浸的电影体验。 在视频制作管理流程中: 小组讨论会上,创作者讨论使用区块链保护电影版权的策略,区块链技术保护创作不被非法复制,确保创作者权益。 年轻观众在虚拟现实电影节中探索不同的电影世界,虚拟现实电影节让观众在家中就能穿越至各个电影世界。 观众可在手中的智能设备上,通过应用选择观看个性化推荐的电影,智能推荐系统根据观众的喜好和观影历史定制电影列表。 影视制作人在全息投影上协作,编辑电影场景,全息技术让电影制作变得更加直观和协同。 在《李清照》AI 视频创作流程项目中: 文字方面使用 GPT 脚本。 图片使用 Midjourney。 视频使用 Runway。 音频使用 ElevenLabs、剪映。 剪辑使用剪映。 还用到其他工具如 PS、AE。 在故事创作方面: 按照特定模板生成穿越故事的 Prompt,包括标题、设置、主角、反派角色、冲突、对话、主题、基调、节奏和其它等方面的设定。 根据模板生成的内容填充为特定题材的小说,并进行分章节,生成小说目录。
2024-10-28
GPT 当前AI 能力有哪些
GPT 作为一种基于生成式预训练变换器架构的人工智能模型,具有以下能力: 1. 自然语言处理能力:能够理解和生成接近人类水平的文本。 2. 复杂的数据处理、决策制定和问题解决能力。 3. 快速的语音交互反应,具有高度的交互性。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 为免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4,且无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件。GPT4 若要使用更多功能,需要升级到 PLUS 套餐,收费标准为 20 美金一个月,此外还有团队版和企业版,功能更多但费用更贵,一般推荐使用 PLUS 套餐。 对于如何评估大模型,对普通人来说,主要从三个方面判断其是否能真正帮助到自己,即基础能力、职场能力、探索对话。基础能力包括语言(文本)生成和语言理解,例如常识类问题和分词类问题的处理。目前常见的大模型如 GPT4、GPT3.5、讯飞星火、百度一言在基础能力方面表现都不错。
2024-10-28
如何开始学习AI
对于新手学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-10-28
AI数字人
AI 数字人是运用数字技术创造出来的人,虽现阶段不能如科幻作品中的人型机器人般高度智能,但在生活各类场景中已常见,且随 AI 技术发展正迎来应用爆发。目前业界对其尚无准确定义,一般可依技术栈不同分两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视行业及直播带货。表现质量与手动建模精细度及动捕设备精密程度直接相关,不过随视觉算法进步,现无昂贵动捕设备时,也能通过摄像头捕捉人体骨骼和人脸关键点信息达到不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。其大致流程包含三个核心算法: ASR(语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应。开源代码如 openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 AI Agent(人工智能体):充当数字人大脑,可接入大语言模型,如 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。Agent 部分可用 LangChain 模块自定义(https://www.langchain.com/)。 TTS(文字转语音):将数字人依靠 LLM 生成的文字输出转换为语音。开源代码如微软的 edgetts(https://github.com/rany2/edgetts),只能使用预设人物声音,接口免费;VITS(https://github.com/jaywalnut310/vits)及其分支版本,可自己训练想要的人声;sovitssvc(https://github.com/svcdevelopteam/sovitssvc)专注于唱歌,如前段时间很火的 AI 孙燕姿。 除算法外,人物建模模型可通过手动建模(音频驱动)或 AIGC 方式生成人物动态效果(如 wav2lip 模型)。但这种简单构建方式仍存在诸多问题,如如何生成指定人物声音、TTS 生成音频如何精确驱动数字人口型及动作、数字人如何使用知识库做出专业回答等。
2024-10-28
中国上市公司在ai应用方面的进展
目前,中国上市公司在 AI 应用方面取得了一定进展。 一方面,许多公司正将 AI 融入其工作流程,以快速达成 KPI、扩张规模和降低成本。例如,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 最近宣布,通过将 AI 融入用户支持,他们在运行率方面节省了 4000 多万美元。 另一方面,对于 AI 应用层的创业者来说,存在一些问题和探索。中国企业软件的发展曾受人均 GDP 不够高、人力成本等因素限制,但如果 AI 能极大降低软件成本并提高效率,可能带来价值突破。我们期待中国 2B 的 AI 软件应用实现跨越式发展。 此外,还有一些相关的资源可供参考,如 2022 2024 年融资 2000 万美金以上的公司列表和详细公司分析、AI Grant 公司列表和详细公司分析、AIGC 行业与商业观察等。同时,也有关于 AI 变革公司/产业实践探索的相关内容,如 2023 年年报中中国上市公司对生成式 AI 的使用,以及安克创新的 AI 实践分析等。
2024-10-28
多模态AI是什么,和深度学习的关系
多模态 AI 是指能够处理和生成多种数据类型(如文本、图像、音频、视频等)交互的人工智能技术,从而能够提供更接近人类感知的场景。 多模态 AI 与深度学习有着密切的关系。在深度学习时期,深度神经网络等技术的发展为多模态 AI 提供了基础。当前,多模态 AI 是 AI 领域的前沿技术之一。 多模态 AI 具有以下特点和应用: 1. 能够无缝地处理和生成多种音频或视觉格式的内容,将交互扩展到超越语言的领域。 2. 像 GPT4、Character.AI 和 Meta 的 ImageBind 等模型已经能够处理和生成图像、音频等模态,但能力还比较基础,不过进展迅速。 3. 多模态模型可以为消费者提供更加引人入胜、连贯和全面的体验,使用户能够超越聊天界面进行互动。 4. 多模态与工具使用密切相关,能够使用设计给人类使用但没有自定义集成的工具。 5. 从长远来看,多模态(特别是与计算机视觉的集成)可以通过机器人、自动驾驶车辆等应用程序,将大语言模型扩展到物理现实中。
2024-10-28
ai行业前沿技术突破
以下是关于 AI 行业前沿技术突破的相关内容: 2024 年,AI 模型在生物医学、气象预测等领域取得了重要突破。诺贝尔物理学奖和化学奖先后颁给了 AI,这不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题,标志着人工智能已成为一门科学学科和加速科学的工具。 在具体的技术应用方面: 基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,将为细胞功能解析、药物设计和生物科学的发展提供有力支持。 DeepMind 展示的新的实验生物学能力 AlphaProteo 是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 生物学前沿模型的扩展方面,Meta 发布的 ESM3 是一种前沿多模态生成模型,它在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 此外,在学习路径方面,偏向技术研究方向需要掌握数学基础(如线性代数、概率论、优化理论等)、机器学习基础(监督学习、无监督学习、强化学习等)、深度学习(神经网络、卷积网络、递归网络、注意力机制等)、自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等,还包括前沿领域如大模型、多模态 AI、自监督学习、小样本学习等以及科研实践。 偏向应用方向则需要具备编程基础(Python、C++等)、机器学习基础(监督学习、无监督学习等)、深度学习框架(TensorFlow、PyTorch 等),了解应用领域(自然语言处理、计算机视觉、推荐系统等)、数据处理(数据采集、清洗、特征工程等)、模型部署(模型优化、模型服务等),并进行行业实践。 AI 技术的发展历程大致为:早期阶段有专家系统、博弈论、机器学习初步理论;知识驱动时期有专家系统、知识表示、自动推理;统计学习时期有机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期有深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括: 大模型,如 GPT、PaLM 等。 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 小样本学习,如元学习、一次学习、提示学习等。 可解释 AI,包括模型可解释性、因果推理、符号推理等。 机器人学,涉及强化学习、运动规划、人机交互等。 量子 AI,包含量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-28
智谱ai的最近消息
以下是智谱 AI 的最近消息: 10 月 25 日,智谱 AI 在 CNCC 上发布了 AutoGLM,一个可将手机变为智能助手“贾维斯”的新产品。其能自主完成复杂任务,如自动订酒店等,表现出强大的理解和执行能力,超越普通对话机器人。它不仅能处理日常事务,还能管理社交关系,真正实现智能代理的功能。 1 月 16 日,智谱 AI 发布新一代模型 GLM4,性能逼近 GPT4,支持更长上下文和更强多模态能力,推理速度快,高并发支持,比 GLM3 提升 60%,还推出了 GLMs 和 GLM4All Tools,CEO 张鹏对大模型发展进行了评论。
2024-10-28
近期融资的ai行业上市公司
以下是近期融资的 AI 行业上市公司的相关信息: Celestial AI 融资 1 亿美元,用于使用基于光的互连传输数据。 Zenarate 融资 1500 万美元,是提供 AI 模拟培训平台的公司。 Augmedics 获得 8250 万美元,用于使用 AR 和 AI 进行脊柱手术。 CalypsoAI 筹集了 2300 万美元,用于生成 AI 模型的护栏。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Weka|20240513|1.4|E|16|AI 原生数据平台|应用|数据|Valor Equity Partners, 高通创投, Nvidia, 日立创投| |CoreWeave|20240501|11|C|190|GPU 基础设施|基础设施|硬件和云平台|Coatue, Fidelity, Altimeter Capital, Magnetar Capital| |Scale AI|202405|10|F|140|数据标记服务|应用|数据|Accel, Tiger Global, Spark Capital, 亚马逊| |Blaize|20240429|1.06|D||AI 边缘计算平台|基础设施|硬件和云平台|淡马锡, 富兰克林邓普顿, Bess Ventures| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| 近期热门融资 AI 产品速递 1 st : You.com 已完成多轮融资,包括来自 Salesforce CEO Marc Benioff 的 2000 万美元资金和 4500 万美元的募资。目前,You.com 用户数量稳定增长,已超过 10 万。体验链接:www.you.com
2024-10-28
营销数据分析智能体
智能体在品牌卖点提炼中的应用包括以下方面: 1. 智能体在营销过程中的更多可能: 强大的数据分析能力,可用于平台销售数据分析。 情感分析能力,可用于评价管理。 绘画能力等,可用于新媒体内容分析与仿写、落地页的制作等。 还包括员工手册助手等。 2. 搭建一个智能体帮助我们提炼卖点: 确定智能体的结构,按照市场营销的逻辑组织。 搭建完整智能体,包括品牌卖点定义与分类助手、品牌卖点提炼六步法、STP 市场分析助手、用户画像分析助手、触点收集助手等结构,以及用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等未在结构中体现但有效的分析工具。 3. 结语: 智能体构建中,对结构的理解和控制是工作流中最重要的部分,提供的是结构化思路,单点可通过不断迭代完善。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。遵循营销管理流程保证输出准确,调整单独智能体提示词提升某部分助手信息准确度。注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。公司人员和咨询人员的决策力和洞察力在营销中更重要,智能体作为灵感助手能帮助决策。
2024-10-28