直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
文字生成图片
以下是关于文字生成图片的相关信息: 文生图工具是利用人工智能技术通过分析输入的文本描述,使用深度学习算法生成相应图片的工具。目前市场上受欢迎的文生图工具包括: DALL·E:由 OpenAI 推出,能根据文本描述生成逼真图片。 StableDiffusion:开源工具,可生成高质量图片,支持多种模型和算法。 MidJourney:因高质量图像生成效果和用户友好界面在创意设计人群中流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104)可以查看更多文生图工具。 AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域广泛应用。图像生成方面,如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 图片 API 提供了三种与图片交互的方法: 根据文本提示从头开始创建图像。 根据新文本提示创建现有图像的编辑。 创建现有图像的变体。本指南涵盖了使用这三个 API 端点的基础知识以及有用的代码示例。可查看。随着对使用和容量要求的更多了解,默认速率限制将提高。
2024-09-02
文字生成图片
以下是关于文字生成图片的相关信息: 文生图工具是利用人工智能技术通过分析输入的文本描述,使用深度学习算法生成相应图片的工具。目前市场上一些受欢迎的文生图工具包括: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和用户友好的界面设计在创意设计人群中流行。 您可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域广泛应用。在图像生成方面,包括使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 图片 API 提供了三种与图片交互的方法: 1. 根据文本提示从头开始创建图像。 2. 根据新文本提示创建现有图像的编辑。 3. 创建现有图像的变体。 本指南涵盖了使用这三个 API 端点的基础知识以及有用的代码示例。要查看实际效果,可查看 OpenAI 的 DALL·E 预览应用程序(https://labs.openai.com/)。图片 API 处于测试阶段,默认速率限制为每分钟 50 张图像。若想提高速率限制,可查看这篇帮助中心文章(https://help.openai.com/en/articles/6696591)。随着对使用和容量要求的更多了解,默认速率限制将提高。
2024-09-02
有什么好的数字人工具或产品推荐
目前在数字人领域,有一些较为出色的工具和产品。例如,腾讯的云雀数字人,具有高度逼真的形象和自然的交互能力;百度的希加加,在智能对话和内容生成方面表现出色;字节跳动的 AIGC 数字人,能够实现多样化的应用场景。但具体选择哪种工具或产品,还需根据您的具体需求和使用场景来决定。
2024-09-02
零基础学习人工智能路线
以下是为零基础学习人工智能提供的路线: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。 了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 入门工具推荐:Kimi 智能助手 ChatGPT 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。 不用梯子、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 AI 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源。 点我去下载
2024-09-02
我有好几份项目相关资料,怎么让ai根据这些资料生成其他类型的文档
目前没有关于如何让 AI 根据您的多份项目相关资料生成其他类型文档的具体内容。但一般来说,您可以先将这些资料进行整理和分类,然后选择适合处理文档生成任务的 AI 工具,例如一些自然语言处理模型。在使用时,向 AI 清晰地描述您的需求,包括期望生成的文档类型、格式、重点内容等。同时,可能需要对 AI 生成的结果进行多次调整和优化,以达到您满意的效果。
2024-09-02
多模态搜索工具
以下是为您介绍的多模态搜索工具: 推荐的 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,提升用户搜索效率和体验。 Perplexity:聊天机器人式搜索引擎,允许自然语言提问,用生成式 AI 技术收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题生成答案,支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来支持图像、语音等多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,提供编程等领域专业建议和指导。 Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 关于提升 AI 搜索准确度和多模态检索: 提升准确度的方法:通过提示词请求大模型以思维导图形式输出答案,通过提示词请求大模型做 Function Calling 判断使用的 Agents。提示词工程是系统学科,需大量调试设计适合业务的提示词。 多模态检索:是提升信息密度的重要措施,随着 5G 发展,互联网信息多元化,图片/视频/音频比重增大。多模态检索要获取不同形式信息聚合参考,实现困难,涉及海量信息源处理和识别,现阶段可基于谷歌搜索,先使用其图片/视频检索 API 拿到匹配内容,再通过 OCR 图片识别/音视频转录等方法获取文本内容。 ThinkAny 的相关情况: 冷启动:未提及具体冷启动方式。 产品特性: 部署方案:当前线上服务采用 Vercel + Supabase 的云平台部署,后续将迁移至基于 AWS 搭建的 K8S 集群,以提升服务稳定性和动态扩容表现。 功能创新:支持 Search / Chat / Summarize 三种模式,对应检索问答/大模型对话/网页摘要三种使用场景;集成包括 Llama 3 70B / Claude 3 Opus / GPT4 Turbo 在内的 10+大语言模型;支持检索链接/图片/视频等模态内容;支持以对话/大纲/思维导图/时间线等形式输出搜索问答内容;支持检索 Google / Wikipedia / Github 等信息源的内容,作为搜索问答的挂载上下文。此外,还开源了一个 API 项目 ragsearch,实现联网检索功能,并对检索结果进行重排和获取详情内容,得到准确度不错的检索结果。
2024-09-02
想在有能搜索视频内容的AI工具吗?比如,我想找一个小猫和小狗打架的视频。
目前市面上有一些能够通过内容理解来搜索视频的 AI 工具,但它们的准确性和适用性可能会因多种因素而有所不同。例如,一些视频平台自身的搜索算法可能会利用 AI 技术来优化搜索结果,根据您输入的关键词“小猫和小狗打架”来展示相关视频。但要实现非常精准和特定的此类视频搜索,可能还需要进一步的技术发展和优化。
2024-09-02
怎么学习ai
学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 4. 掌握相关技巧和工具: 掌握提示词的技巧,它上手容易且很有用。 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 的应用场景,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 5. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库中分享实践后的作品和文章。 6. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 7. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 需要注意的是,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-09-02
人工智能发展前景
人工智能的发展前景十分广阔。 在日常生活中,我们已经能感受到人工智能的普及,它在交通、天气预测、电视节目推荐等方面发挥着重要作用,并且正以惊人的速度发展,使计算机能够以过去难以想象的方式观察、理解世界并与之互动。 从未来进化的角度看,当计算机在各项任务上超过人类时,可能会在不断改进的过程中导致超级智能的出现。届时,机器可能会具有自我意识和超级智能,我们对机器意识的概念将发生重大转变,甚至可能会面对真正的数字生命形式。这也带来了一系列关于合作、竞争以及伦理的有趣问题。 在产业方面,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,正加速与实体经济深度融合,深刻改变工业生产模式和经济发展形态,对建设制造强国、网络强国和数字中国有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(用于模型开发的深度学习框架和工具)、模型层(大模型等技术和产品)、应用层(在行业场景的应用)。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,不过也亟需完善产业标准体系。
2024-09-02
人工智能发展前景
人工智能的发展前景十分广阔。在我们的日常生活中,许多方面都已经有了人工智能的参与,比如交通、天气预测以及电视节目推荐等,其普及程度和发展速度都令人惊叹,使计算机能够以过去难以想象的方式观察、理解世界并与之互动。 从未来进化的角度看,当计算机在各项任务上超过人类时,可能会在不断改进的过程中出现超级智能。届时,机器可能会具有自我意识,成为真正的数字生命形式,这将带来一系列关于意识、合作与竞争等方面的重大转变和问题。 在产业发展方面,人工智能是引领科技革命和产业变革的基础性和战略性技术,正与实体经济深度融合,改变工业生产模式和经济发展形态,对建设制造强国、网络强国和数字中国有重要支撑作用。其产业链包括基础层(算力、算法和数据)、框架层(深度学习框架和工具)、模型层(大模型等)和应用层(行业场景应用)。近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面发展迅速,形成庞大市场规模。随着以大模型为代表的新技术加速迭代,呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,也亟需完善产业标准体系。
2024-09-02