直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
有没有关于新媒体的AI课程
目前知识库中为您找到以下相关的 AI 课程信息: B 站 up 主的课程:每节 15 分钟,免费且内容好,涵盖 AI 艺术字等。 野菩萨的课程: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:参与 video battle,获胜者可获得课程,冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 新手学习 AI 课程推荐: 建议阅读「」部分,熟悉 AI 的术语和基础概念。 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 如果您对以上课程信息感兴趣,可以扫码添加菩萨老师助理,了解更多课程信息。
2025-02-24
如何搭建 知识库
以下是搭建知识库的相关内容: 使用 Dify 构建知识库的步骤: 1. 准备数据:收集纳入知识库的文本数据,包括文档、表格等格式,进行清洗、分段等预处理以确保数据质量。 2. 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好的描述。 3. 配置索引方式:Dify 提供三种索引方式,根据实际需求选择,如追求更高准确度可选高质量模式。 4. 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集使用方式。 5. 持续优化:收集用户反馈,对知识库内容和索引方式持续优化和迭代,定期更新增加新内容。 使用 Coze 智能体机器人搭建知识库的步骤: 1. 手动清洗数据:本次创建知识库使用手动清洗数据,提高数据准确性。 2. 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义,输入,可编辑修改和删除,添加 Bot 并在调试区测试效果。 3. 本地文档:注意拆分内容提高训练数据准确度,将海报内容训练到知识库,按章节进行人工标注和处理,选择创建知识库自定义清洗数据。 4. 发布应用:点击发布,确保在 Bot 商店中能搜到。 本地部署大模型以及搭建个人知识库中关于 RAG 的介绍: 利用大模型的能力搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需先了解 RAG。RAG 是当需要依靠不包含在大模型训练集中的数据时,通过检索增强生成的技术。其应用可抽象为 5 个过程:文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成更合理答案)。文本加载器是将用户提供的文本加载到内存中以便后续处理。
2025-02-24
谁在用deepseek
DeepSeek 被广泛使用,以下是一些具体的应用场景: 在硅谷,不少 AI 领域的重要人士对其称赞有加,如 OpenAI 联合创始人 Andrej Kaparthy 和 Scale.ai 的创始人 Alexandr Wang。 在中国,用户使用 DeepSeek 来做各种工作,例如: 脑爆活动方案(AJ 杭州)。 生成会议纪要方案(陈星北京)。 结合飞书批量处理客户评论(Lily 温州)。 分析总结复盘内容(兰州)。 生成专业专用软件详细使用过程。 写小说框架。 拓展市场的梳理角度和咨询梳理。 写论文。 写营销方案。 写小红书笔记。 写周报。 做设计头脑风暴。 写绘画提示词。 辅助做类似 MBTI 和盖洛普式的产品。 写代码、日常文档。 算命。 协助判断 OpenAI deep research 等。
2025-02-24
如何ai制作PPT
以下是关于使用 AI 制作 PPT 的一些方法和工具: 1. 使用 Claude 和 Gamma.app 组合: Claude 可帮助快速寻找符合条件的论文、提取精炼论文中某部分信息,并找到适合的 PPT 制作工具及教会使用方法。 可向 Claude 提出如搜索权威期刊、特定论文等问题,并获取相关摘要、研究问题等内容用于制作 PPT。 2. WPS AI: 能快速生成 PPT,之后可对主题配色、字体等进行修改,还能添加动画。 3. 免费工具:讯飞智文(http://zhiwen.xfyun.cn) 4. 付费工具:百度文库 橙篇是百度文库于 2024 年 5 月 30 日发布的综合性 AI Native 产品,集多种功能于一身,能满足科研、学术等领域需求,可实现内容自动生成、格式自动调整等。 此外,通用 AI(通义、文心、智谱等)结合提示词也可辅助制作 PPT。AI 辅助 PPT 的原理是通过自动生成内容、根据反馈多次修改以及自定义格式模板来实现格式自动调整等功能,从而提高制作效率和质量。
2025-02-24
deepseek 落地案例
以下是关于 DeepSeek 的落地案例: 1. 华尔街分析师认为 DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为其或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek 2. DeepSeek 在中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 3. 举办了全国 23 城近 4000 人玩转 DeepSeek 的活动,如郑州场展示搭建的无敌工作流,深圳场分享 DeepSeek+出海的落地方案,北京场玩起 AR+机械汪,广州场探讨如何使用 DeepSeek 辅助速通吃“霸王餐”,福州场有最年轻的分享者展示玩转 DS 的示例。同时,活动展示了飞书多维表格和 DeepSeek 的结合的强大之处,且 DeepSeek R1 大模型全面融入飞书多维表格、飞书智能伙伴创建平台等多款产品。详情:https://waytoagi.feishu.cn/wiki/KRtwwVqKKiB7PKkgzu3chsX6nzF 4. 在芯片行业,如存储芯片负责人考虑与 DeepSeek 谈 HBM4 定制合作,台积电研发中心因对方技术调整产能,ASML 总部针对对方算法调整策略,中芯国际因 DeepSeek 证明的技术提高产线利用率并获得追加投资。
2025-02-24
WaytoAGI 知识库有什么应用场景
WaytoAGI 知识库具有以下应用场景: 1. 在飞书 5000 人大群中,内置了智能机器人“waytoAGI 知识库智能问答”,可根据文档及知识进行回答。使用时在飞书群里发起话题时即可,它能自动回答用户关于 AGI 知识库内的问题,对多文档进行总结、提炼;在内置的“waytoAGI”知识库中搜索特定信息和数据,快速返回相关内容;提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解;通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念;分享有关 AGI 领域的最新研究成果、新闻和趋势;促进群内讨论,提问和回答,增强社区的互动性和参与度;提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接;支持多语言问答,满足不同背景用户的需求。 2. WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,目前知识库的内容覆盖:AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践。 3. WaytoAGI 里有个离谱村,是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易,更感兴趣。参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,不仅代表着一个物理空间,更是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。
2025-02-24
Embedding
嵌入(Embeddings)是一种在深度学习和自然语言处理(NLP)中常用的特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量。 其主要用途包括: 1. 搜索:结果按与查询字符串的相关性排序。 2. 聚类:文本字符串按相似性分组。 3. 推荐:推荐具有相关文本字符串的项目。 4. 异常检测:识别出相关性很小的异常值。 5. 多样性测量:分析相似性分布。 6. 分类:文本字符串按其最相似的标签分类。 嵌入通常是浮点数的向量(列表),两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。 要获得嵌入,可将文本字符串连同选择的嵌入模型 ID(例如,textembeddingada002)一起发送到嵌入 API 端点,响应将包含一个嵌入,可提取、保存和使用。在中可查看更多 Python 代码示例。 词嵌入是一种将单个单词转换为单词数字表示(即向量化)的技术。当每个单词被映射到一个向量时,这个向量会以一种类似于神经网络的方式被学习,试图捕捉该单词与整个文本相关的各种特征,如语义关系、定义、上下文等。这些数字化表示可用于确定单词之间的相似性或不相似性,也是机器学习各个方面不可或缺的输入。但简单的嵌入(如对文本数据进行 onehot 编码)存在多种限制。 以下是两个例子帮助更好地理解 Embedding: 1. 电影推荐系统:每个用户和电影都可被视为独特分类标签,直接处理困难,可使用 Embedding 为用户和电影创建低维度向量,捕捉兴趣和特性,通过比较预测评分。 2. 文本分类:如垃圾邮件检测器,可使用词嵌入将单词转换为向量,相似单词有相似向量,基于向量预测邮件是否为垃圾邮件。
2025-02-24
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化,是因为大模型存在一些缺点,如: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 便于管控用户隐私数据,且可控、稳定、准确。 5. 可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。
2025-02-24
NSA
以下是关于 NSA 的相关信息: DeepSeek 最新论文提出了“Native Sparse Attention”(NSA),这是一种高效的超长上下文方案,兼顾训练和推理阶段,能显著提升模型性能。NSA 通过压缩、选择和滑动窗口三种机制,提升计算效率,前向传播速度提高 9 倍,解码速度提升 11.6 倍。其核心在于聚焦重要信息,优化注意力机制,训练出更聪明的模型,甚至在推理任务中表现优异。 DeepSeek 发布了一种名为 NSA(Native Sparse Attention)的创新注意力机制,旨在解决大语言模型处理长文本时的计算效率问题。这一机制通过动态层次化的稀疏策略,在 64k 长度序列上将正向传播加速 9 倍,反向传播加速 6 倍。NSA 不仅显著降低了计算成本,还保持了模型在基准测试、长上下文任务和指令推理方面的卓越性能。 《梁文锋携 deepseek 研究团队丢出重磅研究论文成果.pdf》介绍了一种新颖的方法——原生稀疏注意力(NSA),旨在提高长上下文建模的效率,尤其是在语言模型中。NSA 能够结合算法进展与硬件对齐优化,从而实现训练和推理过程中高效的计算,特别是在处理长序列时。作者提出了一种动态层次稀疏策略,结合了粗粒度的令牌压缩和细粒度的令牌选择,确保了全局上下文感知和局部精度的同时保留。
2025-02-24
通义智文的网址
阿里通义智文的网址是:tongyi.aliyun.com ,讯飞智文的网址是:zhiwen.xfyun.cn
2025-02-24