直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
sd
以下是关于 SD(Stable Diffusion)的相关信息: AIGC 中的 SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,于 2022 年发布的深度学习文本到图像生成模型,主要用于根据文本描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。 在使用 SD 进行图片生成时,如制作专属 AI 二维码,需要下载两个 SD 的 ControlNET 模型和一个预处理器。二维码做好后进入 SD 版块,相关文件需放置在特定路径下。例如,在【QR ControlNET】的文件夹中,后缀为【.yaml】的放在“……\\sdwebuiakiv4.2\\extensions\\sdwebuicontrolnet\\models”这个路径下,后缀为【.safetensors】的放在“……\\sdwebuiakiv4.2\\models\\ControlNet”这个路径下。同时,在生成过程中,关键词非常重要,还需设置迭代步数、采样和图像大小等参数。 对于不熟悉 SD 的小伙伴,可以查看入门教程:。在 SD 绘画学社中,无论绘画新手还是资深画匠,都能一同探索 SD 绘画的无限可能。
2025-02-18
sd
以下是关于 SD(Stable Diffusion)的相关信息: AIGC 中的 SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,于 2022 年发布的深度学习文本到图像生成模型,主要用于根据文本描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。 在使用 SD 进行图片生成时,如制作专属 AI 二维码,需要下载两个 SD 的 ControlNET 模型和一个预处理器。二维码做好后进入 SD 版块,相关文件需放置在特定路径下。例如,在【QR ControlNET】的文件夹中,后缀为【.yaml】的放在“……\\sdwebuiakiv4.2\\extensions\\sdwebuicontrolnet\\models”这个路径下,后缀为【.safetensors】的放在“……\\sdwebuiakiv4.2\\models\\ControlNet”这个路径下。同时,在生成过程中,关键词非常重要,还需设置迭代步数、采样和图像大小等参数。 对于不熟悉 SD 的小伙伴,可以查看入门教程:。在 SD 绘画学社中,无论绘画新手还是资深画匠,都能一同探索 SD 绘画的无限可能。
2025-02-18
请推荐一款好用的提示词优化器
以下为您推荐几款好用的提示词优化器: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,启用提示词优化后能扩展提示词,更生动地描述画面内容。 提供预设词组,小白用户可点击使用。 提示词内容应准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还具备翻译、删除所有提示词、会员加速等辅助功能。 2. 以下是一些提示词相关的模板和资源网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-02-18
扣子AI应用发布到微信小程序中失败
扣子 AI 应用发布到微信小程序中失败可能有以下原因及解决办法: 1. 容器编排不运行: 宝塔面板中设置加速镜像不生效需安,通过命令行手动设置。 新建/etc/docker/daemon.json 文件(如果已经存在可以不用创建)。 在 daemon.json 中添加相应代码。 重启 Docker 服务:systemctl restart docker。若仍无法解决,可继续排查。 2. 本地镜像的方法: 服务下载:服务的百度网盘地址:https://pan.baidu.com/s/1Ueyp6KnOmD18h6wICwJKNg?pwd=85jv 提取码:85jv ;服务的夸克网盘地址:https://pan.quark.cn/s/189b6f3e0d94 。需要把 chatgptonwechat.tar 和 coze2openai.tar 下载到本地。 上传服务:在宝塔操作面板中点击文件,选择上传下载到本地的文件。上传到根目录/www/backup 文件夹下面。 导入镜像:选择 Docker 中选择本地镜像,然后选择导入镜像。导入镜像要选择上传的目录,如根目录/www/backup 。 3. 修改参数不生效:需要删掉“容器编排”和“容器”中的内容,再重新生成一次。 4. 知识库不更新:确认扣子里有点击右上角的发布按钮。 5. 微信机器人无法正常画图,给的图片链接点进去有错误提示:查看/root/chatgptonwechat/run.log 中有相关提示。可能是点链接的时候多了一个小括号。 6. 扫码后,手机登陆后,没有任何机器人的反应:配置有错错误,或者安装不对,根据步骤去逐一检查。或者重装。 7. 机器人回答问题:COW 本身处理不了一次调取多个对话。有代码能力,可以直接调整代码实现。 8. 宝塔之后登录的时候登录不上去:按下图所示重启服务器之后就好了,重启时间可能会久,但一定会重启成功,请耐心等待。 此外,零基础模板化搭建 AI 微信聊天机器人的步骤如下: 1. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: Coze 相关配置: 创建 Coze API 令牌:进入到,点击左下角的扣子 API 选项,进入到 API 管理页面,点击 API 令牌,按照图示创建第一个 API 令牌,创建成功后保存好,因为这个 API 令牌只会在创建成功后显示一次。 记下 Coze AI Bot 的 Bot ID:去到要绑定的 AI Bot 的设计界面,在所在的链接里面记下 Bot ID,将 Bot 发布到 Bot as API 上。
2025-02-18
什么样的智能体才是真正的智能体
真正的智能体具有以下特点和类型: 特点:能够感知环境,采取行动以实现特定目标。可以是软件程序或硬件设备。在 LLM 支持的自主 Agent 系统中,LLM 充当大脑,并具备规划、反思完善、记忆和工具使用等关键组成部分。 规划:包括子目标分解和反思完善,将大型任务分解为小的子目标,并能从错误中吸取教训改进未来步骤。 记忆:有短期记忆用于上下文学习,长期记忆用于长时间保留和回忆信息,通常通过外部向量存储和快速检索实现。 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息。 类型: 决策智能体:使用语言模型遍历预定义的决策树。 轨道智能体:配备更高层次的目标,限制解决空间,遵循标准作业程序并使用预先设定的“工具”库。 通用人工智能体:完全依赖语言模型的推理能力进行所有的计划、反思和纠正,没有任何数据支架的 for 循环。
2025-02-18
剪辑和拍摄两个岗位 会不会被ai取代
目前的观点认为,剪辑和拍摄岗位不太可能被 AI 完全取代。例如,在相关法律法规的《促进创新的人工智能监管方法》中提到,AI 会对工作方式起到补充作用而非完全替代或破坏。在现代工作中,AI 有可能将人们从单调任务中解放出来,让人们有更多时间从事专业训练相关的工作。 同时,在好莱坞的现状中,尽管 AI 在电影制作中已被广泛使用,但也引发了一些争议。如在一些电影中使用生成式 AI 工具制作的图像引发了观众不满,但也有观点认为如果有适当保护措施,AI 可以创造就业机会。 另外,有预测称 2025 年将有 10 亿用户级 AI 助理诞生,AI 可能会取代部分岗位,但也会创造新的工程机会。
2025-02-18
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
什么是大模型一体机
大模型一体机是一个相对复杂的概念。通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其本质是两个文件:一个是参数文件,类似于问答机器人的“大脑镜像”,负责处理和生成文本信息;另一个是包含运行这些参数的代码文件。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 大模型的特点包括: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在架构方面,大模型有 encoderonly、encoderdecoder、decoderonly 等类型。目前常见的 AI 助手多采用 decoderonly 架构。
2025-02-18
deepseek 部署文档
以下是关于 DeepSeek 部署的相关内容: 《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》(https://waytoagi.feishu.cn/wiki/RKK5wNbeHifSAXkAR5hcGYQmn5f?renamingWikiNode=false):来自社区伙伴 Hua 的投稿,手把手指导您在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》(https://waytoagi.feishu.cn/wiki/RZE9wP94tiEO6bkU5cTcyecHnnb) 《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》(https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh):所有用户享 50 万免费 Tokens+API 半价优惠!火山引擎上线了 DeepSeek 系列模型!咱们社区小伙伴做了零基础部署教程,5 分钟打造专属满血版 AI 助手,速度飞快!使用方法中附上了飞书多维表格的接入方法、Coze 的接入使用方法、网页插件的使用方法。 《刚刚,DeepSeek 官方发布 R1 模型推荐设置,这才是正确用法》(https://mp.weixin.qq.com/s/RA1mhAyQOoXD5XOULAGgbQ):DeepSeek 官方下场推荐了部署 DeepSeekR1 的设置。DeepSeek 强调官方部署的版本跟开源版本模型完全一致。
2025-02-18