直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
最强大AI 工具是哪个
以下是一些在不同领域表现出色的 AI 工具: 在软件架构设计中,用于绘制逻辑视图、功能视图和部署视图的工具包括:Lucidchart、Visual Paradigm、ArchiMate、Enterprise Architect、Microsoft Visio、draw.io(现在称为 diagrams.net)、PlantUML、Gliffy、Archi、Rational Rose。 2023 年,能帮助月赚 5w 的部分 AI 工具:AI 研究工具如 Claude、ChatGPT、Bing Chat、Perplexity;图片处理工具如 DallE、Leonardo、BlueWillow、Midjourney;版权写作工具如 Rytr、Copy AI、Wordtune、Writesonic;设计工具如 Canva、Clipdrop、Designify、Microsoft Designer;网站搭建工具如 10Web、Framer、Hostinger、Landingsite;视频处理工具如 Klap、Opus、Invideo、Heygen;音频处理工具如 Murf、LovoAI、Resemble、Eleven Labs;SEO 优化工具如 Alli AI、BlogSEO、Seona AI、Clearscope;Logo 设计工具如 Looka、LogoAI、Brandmark、Logomaster;聊天机器人工具如 Droxy、Chatbase、Voiceflow、Chatsimple;自动化工具如 Make、Zapier、Bardeen、Postman。 在 AI 聊天机器人领域,访问量最大的是 Open AI 的 ChatGPT,占总访问量的 76.31%,角色 AI 以 19.86%的访问量位居第二。其他如 Google 的 Bard、Janitor AI、Perplexity AI、You.com、Crushon AI 和 Personal AI 各自产生的访问量不到总访问量的 2%。
2025-02-09
怎样学习AI智能生成
学习 AI 智能生成可以从以下几个方面入手: 1. 基于规则的测试生成: 测试用例生成工具,如适用于 Java 应用程序的 Randoop,以及适用于.NET 应用的微软开发的 Pex。 模式识别,如 Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷生成相应测试用例,以及 Facebook 开发的 Infer 自动生成测试用例帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型,如 DeepTest 利用深度学习模型生成自动驾驶系统的测试用例,以及 DiffTest 基于对抗生成网络(GAN)生成测试用例检测系统的脆弱性。 强化学习,如 RLTest 利用强化学习生成测试用例,通过与环境交互学习最优测试策略提高测试效率和覆盖率,以及基于强化学习的 A3C 通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成,如 Testim 是 AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例减少人工编写时间,以及 Test.ai 利用 NLP 技术从需求文档中提取测试用例确保测试覆盖业务需求。 自动化测试脚本生成,如结合 NLP 技术扩展 Selenium IDE 从自然语言描述中生成自动化测试脚本,以及使用 Gherkin 语言编写的行为驱动开发(BDD)框架 Cucumber 通过解析自然语言描述生成测试用例。 对于小白理解 AI 技术原理与建立框架,以下是一些通俗易懂的内容推荐: 1. 概念:生成式 AI 生成的内容叫做 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,其中监督学习是基于有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据自主发现规律,经典任务如聚类;强化学习是从反馈里学习以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-09
我是一名初中老师,我想了解符合我应用的知识图谱的相关知识
很抱歉,目前没有关于初中老师适用的知识图谱的相关具体内容。但一般来说,知识图谱是一种以图形化方式展示知识之间关系的技术。对于初中老师而言,知识图谱可以用于组织和呈现学科知识,帮助学生更好地理解知识点之间的关联。例如在数学学科中,可以将代数、几何等不同领域的知识点通过知识图谱进行关联,让学生清晰看到知识的体系结构。您可以根据教学的具体学科和需求,有针对性地构建和运用知识图谱。
2025-02-09
可以查看GPTs是怎么设置的吗
以下是关于 GPTs 设置的详细步骤: 1. 放入完整的 Schema,并点击 Format 进行验证,如果不报错并显示出 Available Action 的列表,则代表成功。 2. 进行授权,输入 ClientID YOUR_ACCESS_KEY,如 ClientID 123456,并点击 Save。 3. 点击对应 Action 的 Test 验证 Action 是否可以调用。如果遇到返回数据过多造成异常的情况,也代表成功,只需在提示词中限定接口返回的数量即可。 4. 为了 GPTs 后期发布和分享,需要配置 Privacy Policy,其位置一般在网站的底部或者菜单的底部。复制 Privacy Policy 网页地址,如 Privacy policy 地址为:https://unsplash.com/privacy 。 5. 完善 GPTs 的基本配置。 6. 提示词调用方面,根据图片中各个对应关系,执行的操作需要指定 action 的名称,需要显示的字段名称指定具体的位置,比如图片作者,则使用 user.name,这样更加精确,不容易出错。完整提示词如下。注意,如果遇到图片目前无法直接显示,可以使用下载链接的方式查看,如下为应对方案的提示词和效果。如果有更好的方案,欢迎提供。 实操配置 Gapier Actions API 的步骤如下: 1. 登录地址:,点击 Copy Link 进行复制 Actions API 链接。 2. 打开 ChatGPT,点击创建 GPTs>Configure>Create new action。了解平台上支持的功能,输入来自 Gapier 的 Actions API 并点击 Import,导入成功。 3. 在 Gapier 复制授权码用于授权。在 Authentication 下选择配置图标,进入授权页面。开始配置授权码: Authentication Type:选择 API Key Auth Type:选择 Basic 输入从网站上复制的授权码,并点击 Save。若需要分享给他人或者公开发布,需要配置隐私策略码,在网页上寻找并复制,回到 GPT 上进行配置。 4. 确定调用的 Action,并在 Prompt 中引用。查看 Action 的方式分为两种,方式一:GPTs>Configure>Actions 页面;方式二:网页查看,地址为。回到 GPT>Configure 页面,引用 Action,比如调用思维导图的 API,直接输入调用 GenerateMindMap API 即可。此外,另外一种引用的方式是:只要在 Instructions 中申明清楚需求,GPT 会自动选择合适的 API。保存后试用。 创建一个 Http 服务让 GPTs 调用的步骤如下: 1. 创建一个每次产生一个随机数的 Http 服务,体验地址如下:https://gptaction.iaiuse.com/api/random 。 2. 直接在 Instructions 里面写,让它去调用接口。窗口最下面有个 Actions,这里就可以设置它和外部系统的接口。 3. 打孔 Add actions 界面,录入相关代码在 Schema 里面。点击下面的 Test 按钮,就能看到 ChatGPT 如何和服务进行交互。第一次允许它会提示是否允许外部服务,点击右边的小三角可以看到对话框,最右边那个隐私政策就是前面设置的。针对每个 action 都可以设置独立的隐私政策。通过这样一个简单的示例,了解 GPTs 如何和外部的服务进行交互,扩展它的能力。
2025-02-09
可以将chatgpt的智能体迁移吗
目前关于 ChatGPT 智能体的迁移,相关研究和讨论表明:在较小规模的模型如 GPT2 级别上做的消融实验中,迁移效果不明显,但不能简单推断在 GPT4 级别等更大规模的模型上也会如此。大型模型可能学习到更好的共同表征并进行正确的计算处理。模型规模增加本质上提高了找到正确函数的机会,像混合模型或乘法权重更新算法就是通过加权组合的“专家”系统来工作。 同时,OpenAI 会陆续更新 ChatGPT 应用,使其具备 Assistant Agent 能力。具身智能是将机器学习算法适配至物理实体与物理世界交互的人工智能范式,以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,具身智能体则将大模型嵌入物理实体,通过传感器与人类交流,强调与物理环境的交互,其行动分为感知决策行动反馈四个步骤。不同环境下有不同形态的硬件本体适应,智能算法可通过本体传感器感知环境、做出决策、操控本体执行动作任务并影响环境,还能通过交互学习和拟人化思维适应环境实现智能增长。
2025-02-09
数字人工具
以下是一些制作数字人的工具: 1. HeyGen:这是一个 AI 驱动的平台,能创建逼真的数字人脸和角色。它运用深度学习算法生成高质量的肖像和角色模型,适用于游戏、电影和虚拟现实等领域。 2. Synthesia:这是一个 AI 视频制作平台,允许用户创建虚拟角色并实现语音和口型同步。支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 3. DID:这是一家提供 AI 拟真人视频产品服务和开发的公司,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后合成逼真的会开口说话的视频。 此外,还有适合小白用户的开源数字人工具,其特点是一键安装包,无需配置环境,简单易用。功能包括生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。系统兼容 Windows、Linux、macOS,模型支持 MuseTalk(文本到语音)、CosyVoice(语音克隆)。使用时需下载 8G+3G 语音模型包,启动模型即可。相关链接:GitHub: 。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随时间和技术发展而变化。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。
2025-02-08
deepseek资料
以下是关于 DeepSeek 的相关资料: 2025 年 2 月 6 日的智能纪要中,DP 模型能进行自然语言理解与分析、编程、绘图(如 SVG、MA Max 图表、react 图表等),使用优势是可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转自 Archerman Capital 关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 集合·DeepSeek 提示词方法论中,提供了一些相关文章和链接,如南瓜博士的相关文章,以及 DeepSeek 官方提示词和最新文章观点学术报告及业界评论的链接。同时还有 R1 模型的一些使用建议。 DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。
2025-02-08
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方就是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试并对比。 使用方法:包括搜索网站、点击“开始对话”、发送装有提示词的代码、阅读开场白后开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存于文件以减轻调试负担,实现联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-08
你是基于什么模型
以下是关于模型的相关信息: 麦橘超然 MajicFlus 模型:是一款基于 flux.dev 微调融合的模型,专注于高质量人像生成,尤其擅长表现亚洲女性的细腻与美感。具有卓越的人像生成能力,能优化不同光影条件下的表现,确保人像面部细节和肢体完整性;有广泛的适用性,在生成非人生物和场景时也有显著改进;简单易用,无需复杂提示词即可生成高质量作品,同时支持更长提示词的精细控制。但该模型并非为生成 NSFW 内容而设计,对社区大部分的 lora 不完美兼容,需要降低权重至 0.5 以下。 Cursor 模型:使用光标聊天、Ctrl/⌘K 和终端 Ctrl/⌘K 可在不同模型间切换。在 AI 输入框下方有下拉列表可选择模型,默认有、cursorsmall 等模型,其中 cursorsmall 是 Cursor 的自定义模型,不如 GPT4 智能但速度更快且用户可无限制访问。可在 Cursor Settings>Models>Model Names 下添加其他模型。 ChatGPT 模型:任何模型都具有特定的基本结构和可调节的“旋钮”(权重)来适应数据。ChatGPT 使用了许多这样的“旋钮”,实际上有 1750 亿个。在某些情况下,可通过已知物理法则或数学猜测来建立模型,如直线、更复杂的数学方法等。
2025-02-08
有哪些直接可以操作电脑的AI
以下是一些可以直接操作电脑的 AI: XiaoHu.AI 能通过图形用户界面操作电脑,执行如订餐、网购、填写表单等复杂任务。其功能亮点包括视觉感知(解析屏幕像素数据,理解状态)、推理规划(通过“思维链”技术动态调整任务计划)、操作执行(使用虚拟鼠标键盘完成任务)。但当前仅对美国 Pro 用户开放测试,未来将扩展更多任务场景。相关链接:https://www.xiaohu.ai/c/xiaohuai/openail3operator 。 此外,还有一些能联网检索的 AI: ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-08