直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
如何复刻我的声音
以下是复刻声音的相关步骤和信息: 1. 前置数据获取处理 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 2. GPTSowitsTTS 训练集格式化:开启一键三连,耐心等待即可。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 3. 声音复刻 开启声音复刻之旅。 实现跨多语种语言的声音。 实践的样本:AIyoyo 普通话 满江红 GPTSoVITS 的特点: 1. 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 2. 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。模仿出来的声音会更加接近原声,听起来更自然。 3. 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 4. 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 5. 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 6. 预训练模型:项目提供了一些已经训练好的模型,你可以直接下载使用。 GitHub: 视频教程: 使用技巧: 1. 更换音色:一开始会感觉很简单,就只是字生成语音,能选的也就是不同的音色。音色因为基于网络红人训练,因此生成的语音音色会和对应的网络红人非常相像。只要选择和自己需要非常接近的音色即可。如果没有接近的音色,也可以自己训练一个,参考 WaytoAGI 的知识库:
2025-02-08
midjourney
以下是关于 Midjourney 的相关信息: 隐私政策: 适用于 Midjourney,Inc.、Midjourney.com 网站和 Midjourney 图像生成平台的服务。 个人数据指与个人相关、可用于识别个人身份的信息。 适用性包括通过服务、训练机器学习算法、网站及第三方来源收集的数据,但不适用于 Midjourney 员工等的个人数据。 可能会更新政策,用户应定期查看,不接受更改应停止互动。 定义了“您”和“使用数据”等概念。 收集的数据类型包括个人数据。 图像提示: 可将图像 URL 添加到提示中,通过/imagine 输入,可拖入或粘贴图片链接。 使用 Midjourney Bot 在私信中上传图像可防止被其他用户看到,除非用户有隐身模式,否则图像提示在网站上可见。 给出了起始图像、中途模型版本 4 和 5 等的例子,以及纵横比提示。 社区准则: Midjourney 是默认开放的社区。 要友善尊重彼此和员工,禁止不尊重、攻击性或辱骂性内容,禁止成人和血腥内容。 未经许可不得公开转发他人创作,分享时要小心。 违反规则可能导致服务被禁止,规则适用于所有内容。
2025-02-08
ai爬虫
以下是关于 AI 爬虫的相关信息: Firecrawl Extract 是一款只需文字提示就能爬取任意网络数据的工具。它具有以下特点: 1. 通过自然语言提示,能轻松将网页内容转换为结构化数据,无需手动写脚本。 2. 支持复杂数据提取,例如联系人信息、任务描述、动态价格等。 3. 兼容多语言与国际网站,能够抓取 JavaScript 渲染的动态页面内容。 4. 提供 API 集成,支持大规模数据处理,可提取数千个结果,解决上下文限制问题。 相关链接: 另外,对于不会代码的人,也可以尝试使用 Python 和 AI 来完成爬虫应用。例如,可以让 ChatGPT 帮忙写抓取特定文章(如地址为 https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ )正文内容的程序,然后在 Colab 里运行。
2025-02-08
开发agent有哪些主流的方案,并从功能性,开发难易程度,适用场景进行对比
以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比: 1. Coze: 功能性:集成丰富插件工具,拓展 Bot 能力边界。 开发难易程度:相对较易。 适用场景:适用于构建基于 AI 模型的各类问答 Bot。 2. Microsoft 的 Copilot Studio: 功能性:外挂数据、定义流程、调用 API 和操作,部署到各种渠道。 开发难易程度:适中。 适用场景:适用于多种场景。 3. 文心智能体: 功能性:基于文心大模型,支持开发者打造产品能力。 开发难易程度:适中。 适用场景:多种场景。 4. MindOS 的 Agent 平台: 功能性:允许用户定义 Agent 的个性、动机、知识,访问第三方数据和服务或执行工作流。 开发难易程度:适中。 适用场景:多种场景。 5. 斑头雁: 功能性:基于企业知识库构建专属 AI Agent,提供多种成熟模板,功能强大且开箱即用。 开发难易程度:相对较易。 适用场景:客服、营销、销售等。 6. 钉钉 AI 超级助理: 功能性:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。 开发难易程度:适中。 适用场景:销售、客服、行程安排等。 Copilot 和 Agent 的区别: 1. 核心功能: Copilot:辅助驾驶员,更多依赖人类指导和提示,功能局限于给定框架。 Agent:主驾驶,具有更高自主性和决策能力,能自主规划和调整处理流程。 2. 流程决策: Copilot:依赖人类确定的静态流程,参与局部环节。 Agent:自主确定动态流程,能自行规划和调整任务步骤。 3. 应用范围: Copilot:主要处理简单、特定任务,作为工具或助手。 Agent:能处理复杂、大型任务,在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot:依赖 LLM 性能,重点在于 Prompt Engineering。 Agent:依赖 LLM 性能,重点在于 Flow Engineering,把外围流程和框架系统化。 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 1. 规划: 制定任务关键方法。 总结任务目标与执行形式。 分解任务为子任务,确立逻辑顺序和依赖关系。 设计子任务执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定节点逻辑关系。 详细配置子任务节点,验证可用性。 3. 完善: 整体试运行 Agent,识别卡点。 反复测试和迭代,优化至达到预期水平。
2025-02-08
how to use Google ai studio
使用 Google AI Studio 的步骤如下: 1. 开始使用生成式 AI Studio: 在 Google Cloud Console 的导航菜单中,导航至人工智能>Vertex AI。 在 Vertex AI 菜单中的 Generative AI Studio 下,单击 Language。 单击 +CREATE PROMPT 按钮,创建提示,您可以将鼠标悬停或单击页面右侧的按钮以了解有关每个字段和参数的更多信息,例如温度和令牌限制。 2. 进行设置和要求: 单击启动实验室按钮,如果需要支付实验室费用,选择付款方式。左侧是 Lab Details 面板,包含打开 Google 控制台按钮、剩余时间、临时凭据等信息。 点击打开谷歌控制台,实验室启动资源,然后打开另一个显示“登录”页面的选项卡。 将选项卡并排排列在单独的窗口中。 注意:如果看到“选择帐户”对话框,请单击“使用其他帐户”。 如有必要,从实验室详细信息面板复制用户名并粘贴到登录对话框中,单击下一步。 从实验室详细信息面板复制密码并粘贴到欢迎对话框中,单击下一步。 必须使用左侧面板中的凭据,不要使用 Google Cloud Skills Boost 凭据。注意:在本实验中使用自己的 Google Cloud 帐户可能会产生额外费用。 单击后续页面:接受条款和条件,不要添加恢复选项或双因素身份验证,不要注册免费试用。片刻之后,Cloud Console 将在此选项卡中打开。 3. 启用 Vertex AI API: 在 Google Cloud Console 中,在顶部搜索栏中输入 Vertex AI API。 单击 Marketplace 下的 Vertex AI API 结果。 单击启用。
2025-02-08
请给出10个 有关 AI 的概念的 知识点 并用150字 进行介绍
以下是 10 个有关 AI 的概念知识点及介绍: 1. 人工智能(AI):目标是让机器展现智慧,是一个广泛的领域。 2. 生成式人工智能(GenAI):旨在让机器产生复杂有结构的内容。 3. 机器学习:使机器能自动从资料中找到公式的手段。 4. 深度学习:基于类神经网络,具有大量参数的更强大手段。 5. 大语言模型(LLMs):具有大量参数的深度学习模型。 6. ChatGPT:基于大型语言模型的对话机器人,能根据输入生成文本回复。 7. AIGC:利用人工智能技术生成包括文本、图像等多种内容的新型生产方式。 8. 统计学基础:包含均值、中位数、方差等统计概念,是 AI 的重要基础。 9. 监督学习:如线性回归、决策树等常用算法。 10. 无监督学习:如聚类、降维等算法。
2025-02-08
AI 知识点
以下是关于 AI 的知识点: AI 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中工作的方式。 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。
2025-02-08
文生图软件
以下是关于文生图软件的相关信息: Tusiart 简易上手教程: 1. 定主题:明确生成图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:可控制图片中特定的图像,如人物姿态、生成特定文字等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 8. 负向提示词 Negative Prompt:用英文写避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开。 9. 采样算法:一般选 DPM++2M Karras,也可参考 checkpoint 详情页上模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 11. 尺寸:根据个人喜好和需求选择。 文生图工具: 目前市场上有许多文生图工具,一些比较受欢迎的包括: 1. DALL·E:由 OpenAI 推出,能根据文本描述生成逼真图片。 2. StableDiffusion:开源工具,可生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量图像生成效果和用户友好界面设计而受欢迎,在创意设计人群中流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104 ),可以查看更多文生图工具。 文字生成视频的 AI 产品: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:熟悉 Stable Diffusion 可安装此插件,在图片基础上生成视频,是 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多文生视频的网站可查看:
2025-02-08
lora是什么
Lora 全称 LowRank Adaptation Models,中文翻译为低阶自适应模型。它的作用在于影响和微调画面,通过其帮助,可以再现人物或物品的特征。大模型的训练通常复杂且对电脑配置要求高,而 LoRA 采用在原有的模型中插入新的数据处理层的方式,避免了修改原有模型的参数。LORA 模型训练是用一些特定特征来替换大模型中的对应元素,比如固定的人物相貌、特定的服装或者特定的风格,这样就可以生成不同于底模的图片。所以,lora 训练比较轻量化,需要的显存较少,硬件门槛显存达到 6G 就可以开启训练。例如,有利用新版 SDXL 生成的 lora——针线娃娃,它可以把一些常见的形象制作成毛线编制的样子,需要使用 SDXL1.0 的模型,触发词是 BJ_Sewing_doll。还有如“KIDS ILLUSTRATION”这样的风格 lora ,可以搭配不同的大模型生成儿童绘本风格的插画。
2025-02-08
现在ai在生活中的作用
AI 在生活中的作用广泛且多样,以下是一些主要方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 识别和阻止欺诈行为,降低风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据,推荐可能感兴趣的产品。 改善搜索结果,提供个性化购物体验。 根据市场需求动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高产品质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,将货物送达偏远地区。 6. 其他领域: 教育领域,提供个性化学习体验。 农业领域,分析农田数据,提高农作物产量和质量。 娱乐领域,开发虚拟现实和增强现实体验。 能源领域,优化能源使用,提高能源效率。 总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2025-02-08