「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
最近有什么类似任务清单的AI应用
以下是一些类似任务清单的 AI 应用: WPS 文档翻译功能:这是一个 AI 办公文档翻译工具,使用自然语言处理技术,市场规模达数亿美元。它能快速翻译办公文档,提高工作效率,例如可快速翻译 Word、Excel、PPT 等文档。 美丽修行 APP:作为 AI 美容护肤产品推荐平台,运用数据分析和自然语言处理技术,市场规模达数亿美元。它能根据用户肤质推荐适合的美容护肤产品,比如为油性皮肤推荐控油、保湿的护肤品。 360 儿童手表:这是一个 AI 儿童安全监控系统,采用图像识别和机器学习技术,市场规模达数亿美元。它能保障儿童安全,让家长放心,比如当孩子走出安全区域时会自动向家长发送警报。 汽车之家 APP:作为 AI 汽车保养提醒系统,运用数据分析和机器学习技术,市场规模达数亿美元。它能提醒车主及时进行汽车保养,例如当汽车行驶到一定里程时会推送保养提醒信息。 平安好医生 APP:这是一个 AI 医疗诊断辅助系统,使用数据分析和机器学习技术,市场规模达数十亿美元。它能辅助医生进行疾病诊断,提高诊断准确性,比如用户上传症状描述和检查报告后,系统能给出初步诊断建议和治疗方案。 腾讯会议:作为 AI 会议记录生成工具,运用语音识别和自然语言处理技术,市场规模达数亿美元。它能自动生成会议记录,方便回顾和整理,比如在会议过程中能生成包括发言内容、讨论要点等的记录。 字体管家 APP:这是一个 AI 书法字体生成器,采用图像生成和机器学习技术,市场规模达数亿美元。它能生成各种风格的书法字体,比如生成楷书、行书、草书等字体。 醒图 APP:作为 AI 摄影构图建议工具,运用图像识别和数据分析技术,市场规模达数亿美元。它能为摄影爱好者提供构图建议,提升照片质量,比如引导用户将主体放在画面的黄金分割点上。 宝宝树安全座椅推荐:这是一个 AI 儿童安全座椅推荐系统,运用数据分析和机器学习技术,市场规模达数亿美元。它能为家长推荐合适的儿童安全座椅,比如根据儿童年龄、体重等信息进行推荐。 途虎养车保养推荐:作为 AI 汽车保养套餐推荐系统,运用数据分析和机器学习技术,市场规模达数十亿美元。它能根据车辆情况推荐保养套餐,比如分析车辆型号、行驶里程等。 丰巢快递柜管理系统:这是一个 AI 物流快递柜管理系统,采用数据分析和物联网技术,市场规模达数十亿美元。它能优化快递柜使用效率,比如分配柜子、通知取件等。 智联招聘面试模拟功能:作为 AI 招聘面试模拟平台,运用自然语言处理和机器学习技术,市场规模达数亿美元。它能帮助求职者进行面试模拟,比如模拟面试官提问并提供反馈。 酷家乐装修设计软件:这是一个 AI 房地产装修设计平台,运用图像生成和机器学习技术,市场规模达数十亿美元。它能为用户提供装修设计方案,比如生成各种装修设计方案供用户选择和调整。
2024-11-19
人工智能在人力资源管理的应用
以下是关于人工智能在人力资源管理应用的相关内容: 在就业、工人管理和自雇职业中使用的人工智能系统,特别是用于招聘和选拔人员、做出影响工作合同关系晋升和终止的决定、分配任务、监测或评估人员等方面,应当列为高风险,因为这些系统可能对人的未来职业前景、生计和工人权利产生重大影响,还可能延续历史上的歧视模式,损害个人的数据保护和隐私权利。 相关报告: 《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 《量子位:AI 视频生成研究报告》 《量子位:中国具身智能创投报告》具身智能正成为人工智能的新浪潮,广泛应用于物理实体,其发展得益于大模型和生成式 AI 的进步。 人工智能在招聘中的潜在风险与应对策略: 应对策略:更新人力资源程序以限制潜在不同影响;对人力资源技术提供商进行尽职调查;修改当前的人力资源隐私声明以符合法规;对 AI 的训练数据进行审查确保质量和无偏差;告知申请人有关数据收集和 AI 筛选流程的细节保障信息透明度;提供合理便利措施确保少数群体不被排除;定期评估 AI 筛选结果及时优化。 建议:企业采用 AI 辅助招聘工具时,必须考虑法律风险和道德责任,确保公平、无偏见的招聘环境,同时遵守相关法律法规。通过综合策略和审慎方法,有效利用 AI 优势并规避潜在风险。
2024-11-19
哪一款 Ai 更适合,并有记忆功能,不需要每次都发历史文章。
目前大语言模型普遍没有记忆功能,每次发送消息都需要包含历史会话内容,否则无法记住之前的对话。会话累加过多时会超出最大上下文窗口长度,同时增加计算成本。为节省资源,AI 聊天应用会自动对历史会话进行摘要,仅保留最近内容。 不过,也有一些应用程序在这方面有所尝试和改进,例如 Rewind 是一款能够提高生产力的应用程序,可以浏览、搜索并询问关于手机上任何您看到的内容。它通过捕捉您在 Safari 中阅读的内容和导入您的截屏来工作,让您可以利用人工智能的力量向 Rewind 提问关于您看到的任何问题,包括为您进行总结。Lazy 也是一款不错的工具,上下文切换不会中断您的工作流程,能随时裁剪各种内容,保存文章等,音频和视频内容还会利用 AI 提取主要内容并展示。
2024-11-18
如何将历史写过的文章发给 Ai,训练生成写作风格
要将历史写过的文章发给 AI 以训练生成写作风格,可以参考以下步骤: 1. 首先,像安迪的做法一样,把过去写的多篇相关文章发给 AI。 2. 让 AI 总结这些文章的写作特点。 3. 根据 AI 总结的特点,编写出描述写作风格的提示词,从而克隆出自己的写作风格。 4. 未来使用这个风格时,先花 3 分钟时间让 AI 分别写多篇内容。 5. 从多篇内容中找到最符合心意的作品,并从其他作品中寻找好的段落。 6. 最后进行整合、修改、删减和润色,少则几分钟、十几分钟,多则半个小时就能完成一篇文章。 同时,就像夙愿提到的,找选题对于写作很重要。我们可以通过学习其他优秀公众号的文章,分析其选题思路、文章结构、表达方式等,不断训练自己的“写作模型”,但要注意不能照搬,而是要形成自己独特的风格。 另外,在写作过程中,“主体性”的介入也很关键。比如在使用 Prompt 生成公众号文章时,要先思考自己对写作的理解以及对特定主题写作风格的认知,这样写出来的 Prompt 才会有个人特色。日常也要注重基本功的积累,因为在表达“意象”时非常考验语言能力。
2024-11-18
SD 下载
以下是关于 SD 下载的相关内容: 1. 模型下载与安装: 二维码做好后,进入 SD 版块,需下载两个 SD 的 ControlNET 模型和一个预处理器。您可以添加公众号【白马与少年】,回复【SD】获取。 在【QR ControlNET】的文件夹中,后缀为【.yaml】的放在“……\\sdwebuiakiv4.2\\extensions\\sdwebuicontrolnet\\models”路径下,后缀为【.safetensors】的放在“……\\sdwebuiakiv4.2\\models\\ControlNet”路径下。 系统要求为 Win10 或 Win11。Win 系统查看配置:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格;查看电脑配置时,需满足 3 个要求(推荐):电脑运行内存 8GB 以上,是英伟达的显卡,显卡内存 4GB 以上。 配置达标可跳转至对应安装教程页。 如果不会科学上网,也可去启动器的界面直接下载模型。将下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角的模型列表中选择(看不到就点旁边的蓝色按钮刷新)。 2. 其他相关文件下载与放置: VAE 可直接在启动器里面下载,下载的 VAE 放在根目录的【……\\models\\VAE】文件夹。 Embedding 可在 C 站通过右上角的筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。
2024-11-18
sd 下载
以下是关于 SD 下载的相关内容: 1. 模型安装设置: 二维码做好后,进入 SD 版块,需下载两个 SD 的 ControlNET 模型和一个预处理器。可添加公众号【白马与少年】,回复【SD】获取。 在【QR ControlNET】的文件夹中,后缀为【.yaml】的放在“……\\sdwebuiakiv4.2\\extensions\\sdwebuicontrolnet\\models”路径下,后缀为【.safetensors】的放在“……\\sdwebuiakiv4.2\\models\\ControlNet”路径下。 选择模型,填入关键词,设置迭代步数为 15,采样选择 DPM++ 2M Karras,图像大小设置为 768768。 2. SD 的安装: 系统需为 Win10 或 Win11。 Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:检查电脑能否带动 SD,需满足 3 个要求(推荐):电脑运行内存 8GB 以上,是英伟达的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),查看电脑运行内存和显卡内存(显存)。8GB 运行内存可勉强运行 SD,推荐 16GB 以上运行内存;4GB 显存可运行 SD,推荐 8GB 以上显存。 配置达标可跳转至对应安装教程页: 。 配置不够可选择云端部署(Mac 也推荐云端部署): 。 备选:SD 难的话,可先试试简单的无界 AI: 。 3. 软件原理傻瓜级理解: 不会科学上网,可在启动器界面直接下载模型,下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角模型列表中选择,看不到就点旁边蓝色按钮刷新。 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,有的大模型自带 VAE,可不用再加。VAE 可在启动器里下载,放在根目录的【……\\models\\VAE】文件夹下。 Embedding 是提示词打包功能,可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。 LORA 功能强大,可将人物或物品接近完美复刻进图像中,使用时需注意版权和法律问题。
2024-11-18
文字生图的必学知识
以下是关于文字生图的必学知识: 1. 开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 配台电脑:非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 2. 课程简述: 先验经验:需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。 课程安排:课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 3. 学习路径:必学、必看内容是基础课,主要是为了解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供了不同的炼丹工具的安装教程;正式的内容部分分为了数据集预处理、模型训练以及模型调试及优化三个部分。 4. 写提示词: 通常的描述逻辑:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 辅助网站: http://www.atoolbox.net/:可以通过选项卡的方式快速地填写关键词信息。 https://ai.dawnmark.cn/:每种参数都有缩略图可以参考,可以方便更加直观的选择提示词。 C 站(https://civitai.com/):每一张图都有详细的参数,可以点击下面的复制数据按钮,然后直接粘贴到正向提示词栏里,然后点击生成按钮下的第一个按键,Stable Diffusion 就可以将所有的参数自动匹配。但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会截然不同。也可以只取其中比较好的一些描述词使用,比如人物描写、背景描述、一些小元素或者是画面质感之类的。 5. Tusiart 简易上手教程(文生图): 定主题:确定要生成的图的主题、风格、表达的信息。 选择基础模型 Checkpoint:按照主题,找内容贴近的 checkpoint。一般喜欢用模型大佬麦橘、墨幽的系列模型,比如麦橘写实、麦橘男团、墨幽人造人等,效果拔群。 选择 lora:在想要生成的内容基础上,寻找内容重叠的 lora,帮助控制图片效果及质量。可以多看看广场上做得好看的帖子里面,他们都在用什么 lora。 ControlNet:控制图片中一些特定的图像,可以用于控制人物姿态,或者是生成特定文字、艺术化二维码等等。也是高阶技能,后面再学不迟。 局部重绘:下篇再教,这里不急。 设置 VAE:无脑选择 840000 这个即可。 Prompt 提示词:用英文写想要 AI 生成的内容,不用管语法也不要写长句,仅使用单词和短语的组合去表达需求。单词、短语之间用英文半角逗号隔开即可。 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,也是一样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。 采样算法:比较复杂,一般选 DPM++ 2M Karras 较多。最稳妥的是留意 checkpoint 的详情页上,模型作者是否有推荐采样器,使用他们推荐的采样器会更有保障。 采样次数:要根据采样器的特征来,一般选了 DPM++ 2M Karras 之后,采样次数在 30 40 之间,多了意义不大还慢,少了出图效果差。 尺寸:看个人喜欢和需求。
2024-11-18
如何自学AI
以下是关于自学 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 但因为人工智能可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。 对于中学生自学 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解最新进展。 思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-18
文生图模型性能排行
以下是一些文生图模型的性能排行相关信息: Kolors 是最近开源的文生图模型中表现出色的一个。它具有更强的中文文本编码器、高质量的文本描述、人标的高质量图片、强大的中文渲染能力以及巧妙解决高分辨率图加噪问题的 noise schedule,实测效果不错。 PIKA1.0 是一个全新的模型,文生视频和文生图的质量都有大幅度提升。在文生图方面稳定得令人惊讶,3D 和 2D 的动画效果出色。 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在 KolorsPrompts 评估集中,Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2024-11-18
利用哪个AI可以快速了解一个领域的发展方向
以下是关于您问题的回答: 要快速了解一个领域的发展方向,可以从以下几个方面入手: 技术研究方向: 1. 数学基础:包括线性代数、概率论、优化理论等。 2. 机器学习基础:如监督学习、无监督学习、强化学习等。 3. 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:包含语言模型、文本分类、机器翻译等。 5. 计算机视觉:有图像分类、目标检测、语义分割等。 6. 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 1. 编程基础:如 Python、C++等。 2. 机器学习基础:像监督学习、无监督学习等。 3. 深度学习框架:例如 TensorFlow、PyTorch 等。 4. 应用领域:如自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:涉及数据采集、清洗、特征工程等。 6. 模型部署:包含模型优化、模型服务等。 7. 行业实践:比如项目实战、案例分析等。 AI 技术的发展历程和前沿技术点概括如下: AI 技术发展历程: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:像视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:包括自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,AI 在医疗药品零售领域也有广泛的应用,例如: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。
2024-11-18