「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
AI创作新手入门步骤
以下是为 AI 创作新手提供的入门步骤: 一、了解基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始学习之旅 在「」中,能找到为初学者设计的系列课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按自己节奏学习,并争取获得证书。 三、选择感兴趣模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。可根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词技巧,因其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品进行创作,并在知识库分享实践后的作品和文章。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得实际应用中的第一手体验,激发对 AI 潜力的认识。 六、具体案例 1. 对于编程方面,可参考元子的 30min Cursor AI 编程上手步骤。 突破对“不会编程”的限制,不断探索与 AI 的边界。 作者将更新多篇相关文章,如第一弹“一点小小的震撼——cursor 黑客松”等。 可通过与作者交流。 2. 对于 AI 3D 创作,可参考 Tripo AI 入门手册。 注册/登录:点击下方网址免费体验(国内可访问),输入邮箱地址获取验证码完成注册登录,或使用谷歌账户直接登录。登录后可查看用户名和拥有的点数。 界面介绍:Tripo 的界面简洁,上方是工具导航栏,中间是公共作品展示区,底部是生成模型的工作区域,包括输入框和创建按钮。其中「Create」是创作主战场,「My Models」是个人作品库,「Favorite」是私人收藏列表。 希望以上步骤和内容能帮助您顺利入门 AI 创作。
2025-01-09
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习,同时掌握提示词的技巧。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 6. 持续学习和跟进: AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白,学习模式为输入→模仿→自发创造。但其中的学习内容可能因 AI 发展而变化,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。该日记中的学习资源免费开源,且学习时间灵活,不必有压力,能学多少算多少。
2025-01-09
Use what AI tool to do ppt
以下是一些可以用于制作 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,允许用户通过输入简单的文本描述来生成专业的 PPT 设计。可能包含丰富的模板库和设计元素,用户可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,以帮助用户更高效地创建演示文稿。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,还有一些组合使用的方式,如 Claude+Gamma.app 可以帮助快速寻找符合条件的论文、提取精炼论文中某部分信息、找到适合的 PPT 制作工具并教会使用。另外,GPT4、WPS AI 和 chatPPT 组合使用也能完成 PPT 制作任务。
2025-01-09
目前比较强势的ai有哪些
目前比较强势的 AI 有以下几种: 1. ChatGPT:在整个前 50 名列表中每月流量占比 60%,估计每月访问量为 16 亿次,每月用户数为 2 亿(截至 2023 年 6 月),是全球访问量排名第 24 的网站。 2. CharacterAI:已成为第二大产品,规模约为 ChatGPT 的 21%,在移动领域表现出色,其 DAU 可与 ChatGPT 相媲美,留存率明显更高。 3. Google 的 Bard 和 Quora 的 Poe:属于普通 LLM 聊天机器人类别,均位列前 5 名。 4. 内容生成工具:如 Midjourney 和 ElevenLabs。图像生成是更广泛的内容生成类别中的主要用例,占流量的 41%,其次是产消者写作工具(占 26%)和视频生成(占 8%)。 5. 模型中心:如 Civitai(用于图像)和 Hugging Face,虽然列表中只有 2 个网站,但带来了显著流量,均排名前 10。
2025-01-09
如何零基础学习ai
以下是零基础学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是零基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-01-09
请问如何学习MJ
以下是关于学习 Midjourney 的相关内容: 1. Midjourney 今天发布了模型个性化 Personalization 或'p'的早期测试版本。其工作原理是:每次写提示时,很多信息是“隐含的”,MJ 的算法通常会用社区的综合偏好填补空白,而模型个性化会学习您的喜好来填补空白。使用模型个性化的要求包括:目前从成对排名中的投票和喜欢的探索页面上的图像中学习,需要大约 200 个成对排名/喜欢才能生效,可在排名页面查看评分数量或在 Discord 上输入/info。使用方法为:在提示后输入p,或使用提示栏中的设置按钮为所有提示启用个性化功能,启用时会在提示后添加一个“代码”,可分享此代码让他人使用应用于该图像的个性化效果,还可以使用s 100 控制个性化效果的强度(0 为关闭,1000 为最大,100 为默认)。但需注意个性化目前不是稳定功能,会随更多成对排名而变化,且可能会推出算法更新。 2. 训练 Midjourney 的 prompt 流程:可以复制每一步,按照步骤跟 GPT 聊下去。原理是把 MJ 的官网说明书喂给 GPT,让它根据说明了解机制和结构,给出适合的提示词。 3. MJ 很长一段时间内依赖 discord 进行操作,可简单理解为一个微信群/钉钉群,群里有机器人,@它并给一段文字,它就会出图片。也可自己创建群组(服务器),把机器人拉进来对话创作。开始创作时@机器人,MJ 会返回 4 宫格图片。想要放大一张图,点击上面的 U 1——4,MJ 会发大图回来。或者看看其他风格,点击上面的 v 14,MJ 会返回新的 4 宫格。简单来说,步骤包括告诉 MJ 要什么,MJ 给 4 个不同风格小图,放大或再看其他风格,在这些图片基础继续处理。初学可能会有一些想法,比如第一次出图感觉不错,但再改可能难,此时设计师技能上线。以前除了氪金多练习没好办法,现在可以去离谱村进修。
2025-01-09
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-09
如何进行数据分析
以下是关于如何进行数据分析的详细步骤: 1. 明确数据分析的目标:确定目标是理解业务、优化业务还是预测未来。 2. 收集整理与清洗相关数据:通过公司的数据库、营销工具、调查问卷等方式收集销售数据、客户反馈、财务报告等方面的数据,完成后做简单的数据清洗。 3. 让 ChatGPT 学习相关数据含义和用法:将不同来源的数据输入到 ChatGPT 中进行学习,让其能够理解这些数据的含义和用法,包括销售额、销售量、客户满意度、市场份额、竞争情况、营销费用等信息。 4. 进行数据分析给出重要结论:通过 ChatGPT 生成的结果,分析不同来源的数据,得出以下重要结论: 提高销售额和市场份额的营销策略和活动,如降低产品价格、提供更好的售后服务、优化产品设计和功能、增加市场推广力度等。 影响客户满意度和忠诚度的因素,如产品质量、服务质量、品牌形象、价格竞争力等。 影响财务报告的因素,如销售额、毛利率、净利润、营销费用占比等。 5. 根据汇报对象身份进行可视化调整:报告可以包括销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面的信息。针对不同身份的人的营销报告有所不同。 在使用 ChatGPT 助力数据分析时,流程如下: 1. 第一个用户提示:限定 SELECT SQL,告诉它不要用 SELECT来查询全部列,且仅回复一条 SELECT SQL 语句。至少查询两列:数据项、数据值,且不能直接查询如 mediumtext/longtext 这样的长类型字段,可以用 count/substring 等函数查询这些长类型列。 2. 系统提示是表结构信息,如有难以理解的字段可以告诉 GPT 字段的意义,有多个表可分开描述。 3. 需校验 GPT 生成的 SQL,不通过直接返回提示:抱歉,不支持此类请求。通过再执行 SQL 查询数据。 4. 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。keyMap 的作用是数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表。由于支持多维数据,单维度数据和多维度数据的提示分开定义,根据结果数据 tableData 的维度,用条件运算符选择对应的提示,再传递给 GPT。 5. 结果数据 tableData 是跟随接口一起返回到前端,已经通过 SQL 查询的数据,不能让 GPT 又生成一次,否则非常耗时。 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。流程描述得比较详细,更多讲述开发时的一些问题、重点和技巧。
2025-01-09
数字人
数字人是运用数字技术创造出来的人,虽现阶段不能如科幻作品中的人型机器人般高度智能,但已在各类生活场景中常见,且随 AI 技术发展迎来应用爆发。目前业界尚无准确定义,一般按技术栈不同分为真人驱动和算法驱动两类。 真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视行业及直播带货,表现质量与手动建模精细度及动捕设备精密程度直接相关,不过视觉算法进步使无昂贵动捕设备时也能通过摄像头捕捉人体骨骼和人脸关键点信息实现不错效果。 制作数字人的工具主要有: 1. HeyGen:AI 驱动的平台,能创建逼真数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等。 2. Synthesia:AI 视频制作平台,可创建虚拟角色并进行语音和口型同步,支持多种语言,用于教育视频、营销内容和虚拟助手等场景。 3. DID:提供 AI 拟真人视频产品服务和开发,上传人像照片和输入内容,平台的 AI 语音机器人自动转换成语音并合成逼真说话视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。使用这些工具时,请遵守相关使用条款和隐私政策,注意生成内容的版权和伦理责任。 以下是一些包含数字人的节目单示例: 1. 节目“猜真人”:魔术互动类表演,2 个、8 个数字分身,分辨哪个是真正的我,需求技术为 AI 数字人。 2. 节目“亲情的应用场景(逝者)”:女儿打扫房间扫到去世父亲的二维码再次对话,涉及 AI 分身的积累准备。 3. 节目“AI 转绘”:经典电影混剪,需求包括短片素材、AI 转绘、Lora。 4. 节目“AI 贺岁”:晚会中场致谢,需求有共创团队记录、大家的感谢、新年祝福。 5. 节目“打工人共情”:有关 35 岁可能被开除等话题,需求包括 AI 素材、共情脚本、炫技视频剪辑。
2025-01-09
comfulUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 生图原理: Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,图像被映射到潜在空间后,扩散过程在这个空间中进行,可通过节点调整对潜在空间的操作。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通过调度器控制,可通过“采样器”节点选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,可通过控制步数影响图像生成的精细度和质量。 安装部署: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘,然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 1. 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 2. Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 3. Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:未提及。
2025-01-09