「AGIへの道」飛書ナレッジベースへ直行 →
ホーム/すべての質問
欧盟人工智能法案立法理念
欧盟人工智能法案的立法理念主要包括以下几个方面: 1. 风险分级管理:对不同风险程度的人工智能应用进行分类监管。 2. 强调高风险项目的“备案”“评估”“透明”等原则。 3. 全面禁止人工智能用于某些特定领域,如生物识别监控、情绪识别、预测性警务。 4. 要求生成式人工智能系统如 ChatGPT 披露内容是人工智能生成的。 5. 认为用于在被认为高风险的选举中影响选民的人工智能系统需特别监管。 6. 旨在促进以人为本、值得信赖的人工智能的应用,并保护健康、安全、基本权利和民主免受其有害影响。 7. 确保欧洲开发和使用的人工智能完全符合欧盟的权利和价值观,包括人类监督、安全、隐私、透明度、非歧视以及社会和环境福祉。 2021 年 4 月发布的《人工智能法案(提案)》引入了风险分级监管、市场准入制度、监管沙盒等制度,以应对突出的算法黑箱问题,确保投放到欧盟市场的人工智能系统及其使用的安全性。近年来,欧盟针对数据治理发布的一系列法案,与即将正式出台的《人工智能法案》共同构成欧盟数据战略框架下的重要监管规则,从底层逻辑入手加强数据的安全保护,促进欧洲数据流动,防范算法自动化决策的潜在风险,建立相关伦理价值标准,保障个人权利,构建监管与创新发展的平衡机制。
2024-12-31
小白学习AI
以下是为小白学习 AI 提供的指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等,您可以根据自身兴趣选择特定模块深入学习。掌握提示词的技巧,因其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享,欢迎您实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白。学习模式是输入→模仿→自发创造。学习资源免费开源,可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 在技术原理方面,通过【AI 学习笔记】小白可以了解以下内容: 1. 生成式 AI 生成的内容叫 AIGC。 2. 相关技术名词及关系:AI 即人工智能;机器学习包括监督学习、无监督学习、强化学习;监督学习有标签的训练数据;无监督学习学习的数据无标签;强化学习从反馈里学习;深度学习参照人脑有神经网络和神经元;生成式 AI 可生成多种内容形式;LLM 是大语言模型。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-31
欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟人工智能法案对我国在生成式人工智能方面立法具有以下启示: 1. 立法理念方面:我国与欧盟在人工智能立法上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现,欧盟法案对我国立法工作具有重要参考意义。 2. 特殊领域监管方面: 算法推荐、深度合成、生成式人工智能是我国规制人工智能的具体领域。欧盟法案对这些领域的某些产品或服务有特殊回应,一定程度上印证了我国特别监管的必要性。 对于深度合成,欧盟法案强化了系统使用主体信息透明度的要求,与我国相关规定有一致性,但我国规定更全面,不过存在规定交叉重复适用的问题。 对于生成式人工智能,欧盟法案将其视为“基础模型”的一种类型,并规定了额外义务,我国相关规定在义务上更为全面。 3. 监管体系方面: 中国针对不同涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体。 欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估划分风险层级,并匹配不同责任措施和差异化监管,进一步界定了各类主体的义务。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟《人工智能法案》对我国在生成式人工智能方面立法的启示主要体现在以下几个方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任作为基本落脚点,将“服务提供者”作为相关义务的履行主体。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同的责任措施和差异化监管。 2. 风险分类分级监管与算法安全评估:在我国,相关指导意见和法规已提出风险防控和算法分级分类安全管理的要求,以及对生成式人工智能服务的分类分级监管要求。欧美在这方面的路径和方法虽有争议,但总体上对我国仍具借鉴意义。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31
知识库管理工具
以下是关于知识库管理工具的相关内容: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述,说明其包含的内容和特点。 3. 配置索引方式:Dify 提供三种索引方式,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式,如需更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库以保持时效性。 创建并使用知识库: 维护知识库内容:为提升召回准确率,可删除、新增或修改知识库内容。 管理知识库:在知识库页面可看到已创建的知识库及相关信息,单击知识库或编辑图标进入详情页面,可进行新增内容、删除内容、更新单元内分段、开启引用等操作。 使用知识库: 在 Bot 内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在 Bots 页面选择指定 Bot 并进入详情页。 4. 在 Bot 编排页面的知识库区域单击加号图标添加指定的知识库。 5. (可选)添加后可在自动调用下拉界面内调整配置项,包括最大召回数量、最小匹配度、调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可查看知识库命中并召回的分片内容。 在工作流内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内选择添加 Knowledge 节点。
2024-12-31
客服机器人工作流怎么写
客服机器人工作流的编写主要包括以下步骤: 1. 创建工作流: 在页面顶部进入工作流页面,并单击创建工作流。 设置工作流的名称与描述,并单击确认。清晰明确的工作流名称和描述,有助于大语言模型更好的理解工作流的功能。创建后页面会自动跳转至工作流的编辑页面,初始状态下工作流包含 Start 节点和 End 节点。Start 节点用于启动工作流,End 节点用于返回工作流的运行结果。 2. 配置工作流:添加工作流节点并按照要处理的用户任务顺序连接工作流。 3. 测试并发布工作流: 单击试运行。运行成功的节点边框会显示绿色,在各节点的右上角单击展开运行结果可查看节点的输出。 只有试运行成功时,才能单击发布。 4. 在 Bot 内使用工作流: 前往当前团队的 Bots 页面,选择进入指定 Bot。 在 Bots 编排页面的工作流区域,单击右侧的加号图标。 在添加工作流对话框,在“我创建的”页面选择自建的工作流。 在 Bot 的人设与回复逻辑区域,引用工作流的名称来调用工作流。 其他操作: 1. 复制工作流:在某一工作流的编辑页面,单击右上角的创建副本图标,可以将该工作流复制到您的工作流列表中。 2. 删除工作流:对于不再需要使用的工作流,您可以在工作流列表内找到该工作流,并在操作列单击删除图标。如果工作流已添加至 Bot,在删除时会同步删除 Bot 中的工作流。
2024-12-31
OpenAI过去12天的发布会总结
以下是 OpenAI 过去 12 天发布会的总结: 自媒体记录方面: 夕小瑶科技说:o3 发布,可能影响码农工作。 孔某人的低维认知:OpenAI 圣诞 12 天总评,感谢大佬赏饭。 MAX 01Founder:一文详解 o3,虽接近 AGI 但使用成本高。 南瓜博士:使用 o3 钱包和脑子可能不够。 数字生命卡兹克:OpenAI 正式发布 o3,通往 AGI 路上已无障碍。 具体发布内容: Day12:o3 与 o3 mini 正式亮相。 Day11:ChatGPT 桌面应用,Option+空格快速唤起。 Day10:OpenAI 发布电话倾诉功能 18002428478。 Day9:o1 满血版 API 和 4o 实时语音 API 更新。 Day8:AI 搜索功能免费开放,并支持实时语音搜索。 Day7:ChatGPT 全新“项目”功能发布。 Day6:实时视频通话&圣诞老人模式正式上线。 Day5:ChatGPT 与 Apple 的深度合作。 Day4:直播“翻车”的 Canvas。 Day3:Sora 终于上线,有案例和功能详解。 Day2:微调 O1 模型,低成本高效率。 Day1:强化学习微调的实操案例。 宝玉日报 12 月 18 日: AI 架构与技术选型的 4 条原则:选主流框架、确保测试覆盖率、避免私有框架、采用模块化设计。 OpenAI 12 天发布会第 9 天:o1 API 正式版速度更快成本降低,支持多种新功能;语音交互升级,引入 WebRTC 支持,处理费用降低;新增偏好微调功能和工具包,简化 API 密钥申请流程。 易观分析报告预测了 AI 技术未来的关键发展方向,德邦证券报告对 OpenAI 十二日发布会进行深度总结,认为随着大模型能力提升和应用场景扩展,AI 应用商业价值有望实现,建议关注相关领域。
2024-12-31
对话机器人工作流怎么写
对话机器人的工作流通常可以按照以下步骤进行编写: 1. 选择合适的预训练大模型作为基础: 根据需求选择基础模型、对话模型等,并通过 API 接口调用大模型的能力。 2. 设置机器人的人格和背景知识: 为机器人设置不同的人格特点和背景知识,使其能够扮演不同类型的“顾客”等角色。 3. 开发对话交互流程: 设计机器人与用户之间的对话流程和交互逻辑,可以使用工作流引擎等工具来可视化定义和管理对话流程。 4. 集成语音交互能力(如有需要): 集成语音识别和合成的能力,提升对话的自然性和沉浸感。 5. 实时监测和优化: 实时监测用户与机器人的对话情况和学习效果,根据反馈数据持续优化对话流程和机器人行为。 6. 支持多场景应用: 将机器人应用于销售培训、客户服务等不同场景,根据场景需求定制不同的机器人角色和对话流程。 以下是一些具体的工作流示例: 示例一:陪练机器人 第一步:开始节点,接收用户选择的小说人物角色名称。 第二步:知识库节点,将输入的小说角色名称作为 query 去知识库检索该角色的性格特点和经典台词。 第三步:大模型节点,让大模型对信息进行筛选,并采用 json 格式输出。 第四步:代码节点,对上游的输入数据进行规整,格式化输出。 第五步:text2image,引用上一步输出的 feature(用于描述人物性格和特点),作为 prompt,生成人物的角色照。 第六步:结束节点,输出人物台词和角色照。 示例二:小说人物角色对话机器人 第一步:开始节点,接收用户向小说人物角色提问的问题。 第二步:知识库节点,将问题作为 query 去小说内容中进行语义检索和全文检索。 第三步:大模型节点,让大模型根据问题和检索到的上下文信息,生成答案。 第四步:结束节点,输出答案,作为小说人物的回答。 在使用工作流时,还需要注意以下配置: 1. 配置数据库节点: 在工作流中支持添加数据库节点,可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 2. 配置变量节点: 用于读取和写入 Bot 中的变量,需要搭配 Bot 使用,确保变量节点内的变量名称与 Bot 内的变量名称保持一致。 3. 引用数组和对象: 结束节点、消息节点和大语言模型 LLM 节点支持直接引用当前节点导入的参数,且支持联想,当输入“{{”后,能够自动关联所引用的数组/对象数据。 总的来说,对话机器人的工作流配置需要充分利用大模型能力,设计贴合实际需求的机器人角色和对话流程,并通过实时监测和优化不断提升应用效果,这需要综合运用 AI、工作流等技术手段。
2024-12-31
关于京东的生成式AI,你知道些什么
生成式 AI 是一种能够生成新内容的人工智能技术,生成的内容可以是多模式的,包括文本、图像、音频和视频。当给出提示或请求时,它可以帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。它从大量现有内容中学习,学习的过程称为训练,其结果是创造的“基础模型”,如为 Bard 等聊天机器人提供支持的 LLM 或大型语言模型。基础模型可用于生成内容并解决一般问题,还可以使用所在领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种易于使用的工具,如 Vertex AI,这是一个端到端机器学习开发平台,可帮助构建、部署和管理机器学习模型。 此外,生成式 AI Studio 具有一些特性,如定义场景和响应格式、提供 API 和 SDK 帮助构建应用程序、调整语言模型等。在使用中,提示的设计很重要,但可能存在一定的复杂性和不确定性。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 从 OpenAI 的官网来看,在 2022 年宣发时被称为一种模型,但在官网的帮助页面中又被称为一种服务,目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2024-12-31