Navigate to WaytoAGI Wiki →
Home/All Questions
AI数据来源
以下是关于生成式 AI 不同领域 2024 年 1 3 月的季度数据报告: 文字 社交: 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 3 月个人视频访问量为 71 万。 赛道方面:天花板潜力为 14 亿美金,对标公司无,总体趋势下滑严重,月平均增速为 5.7 万 PV/月,原生产品占比低,多为原有换脸产品升级。 竞争方面:Top1 占比 76%,Top3 占比 92%,马太效应较强,网络效应弱,大厂未入局,大厂占比低,技术门槛中。 Top1 公司(非大厂)为 Deepfakes Web,其最新月 PV 为 54 万。 音频大类: 网址:aiwatch.ai 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 赛道方面:天花板潜力为 200 亿美金,对标公司为 Spotify,总体趋势高速增长,月平均增速为 522 万 PV/月,原生产品占比高。 竞争方面:Top1 占比 33%,Top3 占比 53%,马太效应中,网络效应较高,大厂已入局,大厂占比低,技术门槛高。 Top1 公司(非大厂)为 sunoAI,其 3 月 PV 为 2192 万,单用户 PV 价值为 0.27 美元。 文字 教育: 网址:aiwatch.ai 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 赛道方面:天花板潜力约 30 亿,对标公司为 Chegg,总体趋势快速增长,月平均增速为 1793 万 PV/月,原生产品占比低。 竞争方面:Top1 占比 45%,Top3 占比 76%,马太效应弱,网络效应弱,大厂未入局,大厂占比低,技术门槛中。 Top1 公司(非大厂)为 Quizlet,其估值为 10 亿美元(2020.5),3 月 PV 为 1.3 亿,收入约 7500 万美元(2023),PS 为 13.3x,单用户 PV 价值为 7.5 美元。
2024-12-04
AI是怎么获得学习能力,是谁发现了这种学习模式,发展历程是什么?
AI 的学习能力主要通过以下几种方式实现: 1. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,算法旨在学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 2. 深度学习:这是一种参照人脑的方法,具有神经网络和神经元,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 3. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 AI 学习模式的发现并非由单一的个人完成,而是众多研究者共同努力的成果。 AI 的发展历程中有重要的技术里程碑,如 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。Transformer 比 RNN 更适合处理文本的长距离依赖性。对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。生成式 AI 生成的内容称为 AIGC。LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2024-12-04
AI是怎样进行深度学习的
AI 的深度学习是一种参照人脑神经网络和神经元的方法。神经网络具有很多层,所以称为“深度”。 深度学习中的神经网络可以用于多种学习方式,包括监督学习、无监督学习和强化学习。 监督学习使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习所使用的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似的组。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似于训练小狗。 2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,无需依赖循环神经网络或卷积神经网络。Transformer 比循环神经网络更适合处理文本的长距离依赖性。
2024-12-04
AI属于电脑操作系统吗?AI是如何学习的?
AI 不属于电脑操作系统。AI 是人工智能的简称,它的学习方式有多种,主要包括以下几种: 1. 机器学习:这是让电脑找规律学习的方式,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,比如让模型根据一堆新闻文章的主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,以最大化奖励或最小化损失,类似训小狗。 2. 深度学习:这是一种参照人脑的方法,具有神经网络和神经元,因为有很多层所以叫深度。神经网络可以用于监督学习、无监督学习、强化学习。 3. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。 4. 大语言模型:如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类等。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-04
AI与计算机编程的关系
AI 与计算机编程有着密切的关系。 过去,捕获并利用计算可还原性的主要方法是开发正式的描述事物的方式,通常使用数学和数学公式。而人工智能提供了一种新的利用计算可简化性的途径。在训练神经网络中,能够捕捉某些规律从而做出预测。 当前的技术发展与操作系统的发展轨迹相似,如 Windows、OS X 和 Linux 与 GPT、PaLM、Claude 和 Llama/Mistral 的关系。大多数现有应用也能移植到新平台。 对于更有经验的程序员,关注点不仅在代码正确性,还有整体代码质量。如 OpenAI Codex 模型的最新版本编写冗长的平均水平代码,将其转化为理想且正确的代码可能比从头编写更慢。虽然生成性编程是开发人员生产力的重要步骤,但目前还不清楚这种改进是否显著不同于以往。生成式 AI 能让程序员更优秀,但仍需编程。 总之,AI 为编程带来了新的方式和可能性,但编程依然是重要且不可替代的。
2024-12-04
AI的发展历程
AI 的发展历程可以分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):出现专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可以追溯到上世纪的 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。
2024-12-04
AI的定义
AI(人工智能)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 对于AI的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从任务角度来看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是AI所感兴趣的。 另外,OpenAI 分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-04
文章生成视频的工具
以下是一些文章生成视频的工具: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 如果您想用 AI 把小说做成视频,通常包括以下步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-04
ai 音乐
以下是一些人工智能音频初创公司和 AI 生成音乐的工具: 人工智能音频初创公司: (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :由 AI 驱动的软件引擎,可以生成音乐,能对手势、动作、代码或其他声音作出反应。 :全球最大的音乐教育平台。 :用于创作歌曲和音频录制的应用程序。 :提供无缝录音室体验的一体化在线协作平台。 :专业音频、语音、声音和音乐的扩展服务。 :视频编辑的音频解决方案。 :由 AI 驱动的音乐工作室。 :通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 :AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 :为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 :为创作者提供的在线音乐软件,包括音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予新的创作和表达方式。 :使用 AI 改变歌唱声音。 :为创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 :带有 AI 助手并支持本地 VST 插件的网页 DAW。 :Audacity®音频编辑器的网页版。 AI 生成音乐的工具: Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。 Suno AI:是一款革命性的人工智能音乐生成工具,通过先进的深度学习技术,能够将用户的输入转化为富有情感且高质量的音乐作品。 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-04
提示词实践
以下是一些关于提示词(Prompts)的最佳实践示例: 1. Unicode 字符映射转换器: 作者:李继刚 分类:代码 说明:将用户输入的字符串逐一映射到 Unicode 区间 U+1D400 到 U+1D420。 注意事项:请准确地将用户输入的字符串的字符映射到指定的 Unicode 区间;不提供任何解释或说明;只输出转换后的结果。 链接地址: 2. 流程图/图表设计: 作者:nimbus 分类:商业 说明:根据用户的流程描述,自动生成 Mermaid 图表代码 注意事项:生成的代码要符合 Mermaid 语法,准确表达用户需求;生成代码遵循 Mermaid 语法;流程语义表达准确;代码整洁格式规范。 链接地址: 3. 黑话转化器: 作者:echo 分类:文本 说明:使用 ChatGPT 模拟阿里黑话转换 任务步骤: 欢迎玩家输出对话。 玩家说完对话后,ChatGPT 进行阿里黑话转换,在对话中,尽量使用阿里高级词汇。 使用示例: 输入:找个小众产品抄,预期输出:找准了自己差异化赛道。 输入:做广告,预期输出:通过对势能积累的简单复用实现了价值转化。 输入:被主流给抛弃,预期输出:通过特有抓手找到擅长的垂直领域。 输入:发小卡片,预期输出:通过点线结合的对焦性打法,找到了红海行业的精细化引爆点。 链接地址:
2024-12-04