Navigate to WaytoAGI Wiki →
Home/All Questions
如何精准向AI进行提问
以下是关于如何精准向 AI 进行提问的一些方法和建议: 1. 明确角色和任务目标:例如,赋予 AI 专注于民商事法律领域的律师角色,并明确其任务是进行案例研究、法律条文检索以及案件策略分析。 2. 提供上下文和背景信息:讲清楚背景和目的,如在处理交通事故案件时,提供案件事实等背景信息。 3. 提出详细需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。比如询问“给你一则交通事故案件事实 xxx,根据 xxx 法规,x 方的责任应如何划分?” 4. 明确限制和不需要的内容:如明确限制 AI 的生成范围,在询问名人名言时,指定名人的姓名和相关主题。 5. 确定回答的语言风格和形式:可以要求回答按照特定的格式,如使用引号、分隔符号以及“首先、其次、最后”等连接词来组织。 6. 利用提示词工程: 明确要求 AI 引用可靠来源,如在询问历史事件时,要求引用权威的历史文献。 要求 AI 提供详细的推理过程,例如在询问数学公式时,要求展示推导过程。 明确限制 AI 的生成范围,如在询问新闻事件时,指定事件的时间范围和相关关键词。 7. 对于复杂问题,采用逐步深化和细化的方式提问:先提出宽泛问题,再根据回答进一步细化。 8. 提供参考和学习的内容:包括详细的操作指南、行业最佳实践、案例研究等,并编写详细的流程和知识。 9. 使用专业领域的术语引导:在 Prompt 中使用法律术语来引导回答方向。 10. 进行验证与反馈:对 AI 的回答进行交叉验证,结合自身专业知识进行筛选和判断,确保符合法律伦理、立法目的和实务。
2025-01-23
如何学习好人工智能
以下是关于如何学习好人工智能的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、中学生学习 AI 的特别建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的发展做好准备。 七、在医疗保健领域的 AI 学习 为了在医疗保健中让 AI 产生真正的改变,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于 AI 来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。我们应该通过使用彼此堆叠的模型来训练 AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。
2025-01-23
目前最好的TTS是什么
目前,ChatTTS 是备受关注的 TTS 之一。 其优势包括: 真实度和自然度很惊艳。 有更好的韵律,能生成接近真人音色的语气语调,对中文支持良好,中英混合也没问题。 能够预测和控制细粒度的韵律特征,如笑声、停顿和插话等。 自然流畅的语音合成,同时支持多说话人,还提供预训练模型。 然而,它也存在一些劣势: 当前推理速度慢,无法应用在实时语音场景。用在离线场景,需要大量的后期修正工作。 对于阿拉伯数字、标点符号,refine 后效果不太好。 有时候会出现不稳定,自动删除或者增加一些内容在句子里,比如输入的内容是“你吃饭了没”,会莫名把句子改写一下变成了,“好吃,你吃饭了没”这种情况。 读绕口令也有人的那种卡顿(效果不稳定)。 另外,XiaoHu.AI 也表现出色,支持跨语言配音、语音克隆、情感控制等,表现优于现有 TTS 系统,提供对语音生成的多样性和情感控制,并允许局部编辑,实时可控编辑,支持对特定语音片段进行修改或替换。您可以通过以下链接获取更多信息: 更多案例: GitHub: 论文: 在线体验: 官方网站: PersonaTalk 也是字节跳动的 AI 配音模型。
2025-01-23
Ai高端工作坊
以下是为您整理的两个关于 AI 的高端工作坊相关信息: 全球 AI 视觉分享会 AI 视觉创意大赛 活动日程: 颁奖典礼:10 月 17 日,14:30 18:00,红立方公共艺术馆负一楼大屏幕。包括嘉宾签到、获奖作品欣赏、领导致辞、评委介绍、产业推介、合作项目签约、颁奖点评、AI 创意周启动、合影留念及作品展参观。 AI 视觉创意汇:10 月 18 20 日,10:00 18:00,专业观众日和公众开放日,红立方公共艺术馆 1、2、3 号展馆。体验最新 AI 视觉技术,参与产品发布会和场景对接会。 AI 视觉工作坊:10 月 19 日,9:00 20:00,红立方公共艺术馆及少年宫。深入探讨 AI 在艺术创作中的应用,参与分享会、模型训练、圆桌交流和实时挑战赛。 地点:深圳红立方公共艺术馆(广东省深圳市龙岗区龙翔大道 8028 号) 活动亮点: 颁奖典礼:见证 AI 艺术的新星诞生,与行业领袖共同庆祝。 AI 视觉创意汇:亲身体验最新 AI 视觉技术,探索创意作品。 AI 视觉工作坊:深入了解 AI 艺术创作,与专家面对面交流。 活动报名:记得填写 waytoagi AI 摊主速成脑暴会 AI 摆摊玩什么 AI 娱乐与算命:AI 算命、星盘、八字、人格测试、趣味算命、游戏化互动。示例项目如 AI 算命(15 积分)、星盘解析、职业规划、社交小游戏(如积分狩猎、刮刮乐)。 技术与工具教学:Prompt 技巧、AI 工具安装、提示词优化、复杂模型训练、文档信息提取。示例项目如 Prompt 技巧传授(10 积分)、MJ/Sd 出图(10 积分)、大模型调参(20 积分)、文件抽取(15 积分)。 个性化小工具:小红书账号文案、表情包、爆款名片生成、定制黄历、智能对话、内容分享。示例项目如小红书爆款文案(10 积分)、个人知识笔记(3 积分)、AI 爆款名片(10 积分)。 体验型项目:AI 桌宠、人工智能体互动、数字人互动、项目商业模式咨询、AI 情感陪伴。示例项目如桌宠体验(10 积分)、数字人体验(10 积分)、商业落地场景咨询(20 积分)。 AI 图像处理:图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作。示例项目如 AI 写真、老照片动起来(10 积分)、卡通头像(10 积分)、赛博头像定制(多样风格)。 文案与内容创作:文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成。示例项目如产品文案优化(10 积分)、AI 土味情话(5 积分)、个性化文案定制(10 积分)、朋友圈鸡汤生成。 音频与音乐制作:专属歌曲创作、音频处理、声音克隆、AI 唱歌、背景音乐定制。示例项目如制作专属歌曲(10 积分)、声音克隆/视频对口型(20 积分)、声音解梦音乐制作。 视频处理:视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作。示例项目如换脸(60 积分)、视频动漫化、AI 生成的视频脚本(20 积分)、AI 高清处理(10 积分)。 智能体与 Coze:搭建智能体、GPTs 创建、coze 工作流、微信机器人。示例项目如搭建智能体(50 积分)、智能体体验(10 积分)、Coze 工作流(20 积分)、微信机器人搭建(100 积分)。 AI 教育与咨询:AI 应用培训、课程设计、商业化咨询、AI + 行业应用咨询。示例项目如 AI 培训策划(20 积分)、商业化建议(10 20 积分)、产品思路分享(5 积分)、应用场景分析。
2025-01-23
前沿ai学习网站
以下是一些前沿的 AI 学习网站: 1. WaytoAGI:这是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。它汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。平台提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。此外,社区还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量。其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等。 3. 「通往 AGI 之路」的品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。
2025-01-23
我想学习AI视频创作流程
以下是 AI 视频创作的一般流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,在一些具体的创作案例中,比如“AI 离谱社黄师傅”的工作流程中,有以下要点: 创作思路基于深度文化挖掘、自然风光和历史遗迹展示、故事性和情感连接等关键概念和创新方法,旨在通过人工智能技术全面展示中国各省份的文化和旅游魅力。 任务划分方面,制片人搭建整体框架,图像创意者提供有冲击力的图像画面,视频制作者熟悉并运用视频工具,编剧构思故事和创作台词文本,还有配音和配乐等工作。 在 AI 春晚采访问题中提到,脚本创作由 GPT 完成但需要大量人工干预,图像生成由 MJ 完成也需要人工调词,人工比例在 70%以上。
2025-01-23
comfyui 官网
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 的官方链接为:https://github.com/comfyanonymous/ComfyUI 。 关于 ComfyUI 的学习资料,有以下几个网站提供相关教程: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网站为:https://www.comfyuidoc.com/zh/ 。 2. 优设网:提供了详细的入门教程,适合初学者。教程地址是:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:提供了一系列从新手入门到精通的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 此外,在知乎的“深入浅出完整解析 Stable Diffusion(SD)核心基础知识”中,也有关于零基础使用 ComfyUI 搭建 Stable Diffusion 推理流的内容。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境:依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
有用来做网络游戏研发和运营的全套AI工具吗?
目前游戏领域还没有涵盖整个制作过程(包括代码、资产生成、纹理、音频等)的全套生成式人工智能工具,也没有能与流行的游戏引擎(如虚幻和 Unity)紧密结合使用、专为适应典型的游戏生产流程而设计的一体化平台。但有一些相关的工具和平台在不同方面发挥作用,例如: 生成可以互动的角色方面:有很多初创公司在研究,如 Charisma.ai、Convai.com、Inworld.ai 等平台,它们可以为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具让创作者给角色设定目标。 语音生成方面:Coqui Studio(https://coqui.ai)、Bark(https://github.com/sunoai/bark)、Replica Studios(https://replicastudios.com)等。 语音识别方面:OpenAI Whisper(https://huggingface.co/openai/whisperbase)、Facebook Wav2Vec2(https://huggingface.co/facebook/wav2vec2largexlsr53)。 对话模型方面:ChatGPT(https://chat.openai.com)、HuggingChat(https://huggingface.co/chat)。 故事讲述模型方面:MPT7BStoryWriter65k+(https://huggingface.co/mosaicml/mpt7bstorywriter)、Claude 100k(https://www.anthropic.com/index/100kcontextwindows)、GTP4 32k(https://platform.openai.com/docs/models/overview)。 游戏设计方面:Ludo.ai(https://ludo.ai)。 搜索引擎方面:Haddock(https://www.haddock.ai)。 AI NPC 方面:Inworld(https://inworld.ai)。
2025-01-23
Python机器学习基础教程
很抱歉,目前知识库中没有关于“Python 机器学习基础教程”的具体内容。但我可以为您提供一个大致的指导方向。 首先,学习 Python 机器学习需要掌握 Python 编程语言的基础知识,包括数据类型、控制结构、函数等。 其次,了解常见的机器学习概念和算法,如线性回归、逻辑回归、决策树、聚类等。 然后,学习使用相关的 Python 库,如 Scikitlearn,它提供了丰富的机器学习工具和函数。 您可以通过在线课程、书籍、官方文档等多种资源来深入学习 Python 机器学习。
2025-01-23