Navigate to WaytoAGI Wiki →
Home/All Questions
聊聊ai的发展
AI 的发展历程如下: 1. 智能起源:早期的 AI 更多应用于完成人脸识别等分类判断任务,充满机器感。 2. 生成式 AI 的诞生:在写文章、画画、写歌等方面展现出类似人类的智慧,能力惊人。 3. 发展阶段: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 4. 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 对于希望继续精进 AI 的人,可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-27
聊聊ai的发展
AI 的发展历程如下: 1. 智能起源:早期的其他 AI 更多应用于完成人脸识别等分类判断任务,充满机器感。而生成式 AI 的诞生带来了变革,它能像人一样创作交流,在写文章、画画、写歌等方面展现出人类般的智慧,能力惊人。 2. 发展阶段: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 3. 当前前沿技术点: 大模型(Large Language Models):如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 如果希望在 AI 领域继续精进,还可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-27
照片修复工具有哪些
以下是一些常见的照片修复工具: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可以增加更多细节 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific 遥遥领先:https://magnific.ai/ Krea:https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片: https://github.com/TencentARC/GFPGAN 在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/ 关于 ComfyUI BrushNet 的介绍: 这个过程有点像小时候玩的连点成图游戏,只不过是电脑在操作图片。具体来说: 1. 掩码:如同一张有洞的纸覆盖在图片上,电脑程序通过这些洞知晓哪些部分需要修复。 2. 编码器:是电脑的大脑,把需要修复的图片转换成能理解和处理的信息。 3. 噪声潜在空间:为使修复部分不单调,程序会加入随机性,让修复的图片更自然。 4. BrushNet 和冻结的 UNet(Frozen UNet,预训练好且固定不变的):像画家的画笔和调色板,协助电脑细致完成修复工作。 5. 去噪和生成图像:程序尝试去除不需要的噪声,创建出真实的图片部分。 6. 模糊掩码和合成:最后,程序用特殊技巧将新生成的图片和原始图片融合,如同用橡皮擦去画作错误并重画,只是运用的是电脑技术。
2024-12-27
有哪些 ChatGPT 的使用技巧?
以下是一些 ChatGPT 的使用技巧: 1. 开发方面: 查找技术解决方案:效率大师!用 ChatGPT 查找技术解决方案,比 Google 更快捷省心。 优化代码:直接让 ChatGPT 自己分析、优化。它会找到代码重复的部分,然后合并重复项,让代码更容易维护,并展示代码优化案例。 2. 英文学习方面: 推特博主的英语老师制作了一个 GPT 工作流,基于每个人的日常需求生成定制素材。 具体使用方法:先把下面整段 prompt 喂给 ChatGPT(建议开一个新的对话专门用来学习英文),然后 ChatGPT 会扮演你的美国好朋友,每当你输入英文和中文表达,ChatGPT 都会返回更地道的表达,并且对其中的俚语部分加粗,更容易帮助你学习和记忆。当你输入特定语句,ChatGPT 会输出今天的对话回顾,进行复习,并建议 3 个推荐的任务,以强化记忆。建议使用方式包括开一个窗口,复制 prompt,然后手机端打开这条历史记录,点右上角的耳机图标,开始打电话,打电话又能练口语又能练听力,结束之后看回顾,可以帮助阅读。群友也写了一个类似的版本,并放在讯飞上做了尝试,效果不错。 3. 会话补全方面: ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo。使用 OpenAI 的 API,你可以使用 gpt3.5turbo 构建你自己的应用来做这些事情,如起草一份邮件或者其他文字内容、写 Python 代码、回答关于一组文档的问题、创建会话代理、给你的软件提供一个自然语言的接口、辅导各种学科、语言翻译、假扮成游戏中或其他内容的角色。这个指引说明了如何调用基于聊天的语音模型的 API 并分享了一些能获取到更好结果的技巧。你也可以体验新的 OpenAI 在线编辑器的聊天格式。
2024-12-27
流程图生成
生成流程图主要有以下两种方式: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形: 代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 使用 ChatGPT 生成流程图的流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑,将自然语法转成图形语法。 3. 在线校验测试是否成功。 如果使用 Lucidchart 生成项目管理流程图,可以按照以下步骤: 1. 注册并登录:。 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 利用这些 AI 工具,可以快速、高效地创建专业的流程图,满足各种工作和项目需求。需要注意的是,部分内容由 AI 大模型生成,请仔细甄别。
2024-12-27
小白从0学习ai的教程在哪里
以下是为小白从 0 学习 AI 提供的教程和建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于零基础小白: 网上有很多基础课程,您可以找找相关教程。 看一些科普类教程,比如相关视频。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。 7. 推荐视频: 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili:https://www.bilibili.com/video/BV17t4218761/?vd_source=3cc4af77a2ef185635e8097d3326c893 由(女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,新手友好,带你 50 分钟速通 AI 大模型原理。 用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第 11 期_哔哩哔哩_bilibili:https://www.bilibili.com/video/BV1iT421Q7M1 某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核。
2024-12-27
AGI是什么的缩写?
AGI 是 artificial general intelligence 的缩写,意思是通用人工智能,即能够做任何人类可以做的事。OpenAI 在其内部会议上分享了 AGI 的五个发展等级,分别为: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-27
如何入门?
以下是关于入门 AI 的一些建议: 1. 了解基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 此外,对于深度学习的入门,您可以: 1. 先学习 Python 和 R 语言。 2. 学习吴恩达的深度学习课程。 3. 观看 Siraj Raval 的视频,他可以用风趣易懂的方式解释复杂概念,可在 YouTube 上关注他的个人频道。 4. 阅读 François Chollet 的两本书:《Deep Learning with Python》和《Deep Learning with R》。 对于大模型的入门,通俗来讲,大模型输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可以类比为上学参加工作:找学校(训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练)、确定教材(数据量特别多)、找老师(用算法讲述内容,让大模型理解 Token 之间的关系)、就业指导(为让大模型更好胜任某一行业,需要进行微调)、搬砖(进行推导,如翻译、问答等)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会被分割和数字化,形成词汇表。
2024-12-27
工作流怎么建立
建立工作流的方式有多种,以下为您分别介绍: 1. 【拔刀刘】自动总结公众号内容,定时推送到微信的工作流搭建: 工作流全貌:双击画板可查看高清大图,结合后边具体细节反复查看。 开始节点:用户在开始节点输入 server 酱的 sendkey 和 rss 列表。其中,server 酱的 sendkey 获取方式参看文档「相关资源」部分;rss_list 没有的可以先白嫖提供的测试数据。 分割 RSS 列表:使用「文本处理」节点,处理输入的 rss 列表为一行一个,输出为数组,方便后边节点批处理。 读取 RSS 内容:在插件中找到链接读取节点,配置节点选择批处理,批处理输入参数选择「分割 rss 列表」的 output,下方输入参数中 url 选择当前节点中的 item1。 汇总 RSS 中所有文章内容:承接上一步所有文章内容,格式化输出。代码使用「代码」节点,左侧节点选择代码,输入项选择上一步中输出的 outputList,在 IDE 中编辑选择「Python」并输入相应代码。配置输出项类型选择「Array<Object>」,分别输出 title、url、author。 2. 智谱 BigModel 共学营第二期把微信变成超级 AI 助理的工作流搭建: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包的方式有新注册用户注册即送 2000 万 Tokens、充值/购买多种模型的低价福利资源包(直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;语言资源包:免费 GLM4Flash 语言模型/ ;所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ;共学营报名赠送资源包。 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 3. 【ComfyUI】本地部署 ComfyUI 上手指南的工作流搭建: 清空所有节点,从零开始。先加载一个模型选择器的节点,右键点击空白处选择【add node】,生成节点后可选择安装好的大模型,后面还有三个连接点可指向下一个模块。 按住 clip 后面的点进行拖拽,点击【CLIPTextEncode】,得到一个提示词输入框。同理,再加一个提示词框,形成正向提示词和负向提示的架构。 为方便管理,可右键给节点添加颜色,如正向提示词为绿色,负向提示词为红色。还可以添加一个组,组里的节点可一起移动。 使用采样器给提示词内容添加噪声,从提示词节点后面再次拉出一根线,选择【KSampler】,里面有熟悉的参数:种子数、迭代步数、CFG、采样器等。 设置输出图片尺寸,从【latent image】中拉出一个节点,选择【EmptyLatentImage】,在节点里填写想要输出的尺寸和一次性生成的数量。 使用 VAE 对之前的噪声进行解码,从【LATENT】中拉出一个节点,选择【VAEDecode】,建立好之后将最开始的 VAE 节点与之相连。
2024-12-27
自己的ai来源模型是什么
智谱·AI 的开源模型包括以下部分: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。 WebGLM2B MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。 MathGLM500M MathGLM100M MathGLM10M MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。 Visualglm6B:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求选择合适的部署方式。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等作为基础,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-12-27