直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
帮助普通大众了解生成式AI,以满足对AI的在使用过程中的一般需求
生成式 AI 是一种能够为用户生成内容的人工智能,生成的内容可以是多模式的,包括文本、图像、音频和视频。当给出提示或请求时,它可以帮助完成诸如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等各种任务。 生成式 AI 从大量现有内容中学习,这个学习过程称为训练,其结果是创造“基础模型”,如为 Bard 等聊天机器人提供支持的 LLM 或大型语言模型。基础模型可用于生成内容并解决一般问题,还可以使用所在领域的新数据集进一步训练以解决特定问题,从而创建一个新模型。Google Cloud 提供了如 Vertex AI 等多种易于使用的工具,帮助在具有或不具有 AI 和机器学习背景的项目中使用生成式 AI。 在技术原理方面,生成式 AI 生成的内容叫做 AIGC。相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-10-09
智能识别图片或文本内容,格式化录入表格中
以下是智能识别图片或文本内容并格式化录入表格的方法: 1. 可以使用通义听悟、飞书妙记、钉钉闪记进行录音转文字,以钉钉闪记为例: 第一步打开钉钉闪记。 结束录音后点击“智能识别”。 点击智能摘要,获得本次会议的纪要。 如果需要更多内容,复制所有文案或下载文本文件到GPT、GLM、通义千问等大语言模型对话框中,再将会议内容发送。 2. 该场景对应的关键词库(12 个):会议主题、参与人员、讨论议题、关键观点、决策、时间、地点、修改要求、文本格式、语言风格、列表、段落。 3. 提问模板(3 个): 第一步:用飞书会议等软件整理好会议记录,并分段式发给 ChatGPT 生成总结: 请根据以下会议资料,整理会议的关键信息,包括:会议主题、参与人员、讨论议题、关键观点和决策。 会议资料: 时间:XXX 年 XXX 月 XXX 日 地点:XXXX 参与人员:XXX、XXX 会议主题:XXXX 讨论内容: Speaker1:XXX Speaker2:XXX Speaker3:XXX 第二步:检查生成的总结: 请根据我提供的会议补充信息和修改要求,对 XXX 部分进行修改: 会议补充信息:XXXX 修改要求:XXXX 第三步:优化文本格式和风格 请将生成的总结,以 XXX 形式呈现(例如:以列表的形式、以段落的形式、使用正式/非正式的语言风格) 请给上述会议总结,提供修改意见,并根据这个修改意见做最后的调整
2024-10-09
AGI
AGI 即通用人工智能(Artificial General Intelligence),是能够像人类一样思考、学习和执行多种任务的人工智能系统。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。NLP 指自然语言处理,LLM 指大型语言模型。
2024-10-09
如何学习AI
以下是为新手提供的学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-09
sora 是什么工具
Sora 是一个大型视觉模型,具有以下应用和原理: 应用: 教育:能将文本描述或课程大纲转化为针对个别学习者特定风格和兴趣量身定制的动态、引人入胜的视频内容,还能将静态教育资产转换为互动视频,支持一系列学习偏好,增加学生参与度,使复杂概念更易于理解和吸引人。 游戏:生成动态、高保真视频内容和实时效果的真实声音,克服传统游戏开发的限制,为开发者提供创建响应玩家行动和游戏事件的不断发展的游戏环境的工具,创造前所未有的沉浸式体验,为叙事、互动和沉浸打开新的可能性。 原理: 类似于 DALLE3,在处理用户提供的文本提示时,可以利用 GPT 模型来扩展或优化提示。GPT 模型将简短的用户提示转化成更详细、更富有描述性的文本,有助于 Sora 更准确地理解并生成符合用户意图的视频。 用户提供文本提示,Sora 根据提示在潜在空间中初始化视频的生成过程。利用训练好的扩散模型,从初始化的时空潜伏斑块开始,逐步生成清晰的视频内容。 使用与视频压缩相对应的解码器将潜在空间中的视频转换回原始像素视频,并对生成的视频进行可能的后处理,如调整分辨率、裁剪等,以满足发布或展示的需求。
2024-10-09
学习ai有哪些认证
学习 AI 相关的认证途径如下: 国家工信部、微软、讯飞等机构提供初级人工智能工程师证书。 可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按自己的节奏学习,并有机会获得证书。 同时,为了更好地学习 AI,您可以: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2024-10-09
人工智能认证有哪些
以下是一些与人工智能相关的认证信息: 1. 根据附件七,通知机构签发的认证应使用通知机构所在成员国的有关机关易于理解的语言。认证有效期方面,附件一所列人工智能系统不超过五年,附件三所列人工智能系统不超过四年。根据提供者申请,认证有效期可重新评定延长,附件二所列系统不超过一年,附件三所列系统不超过四年。若通知机构发现特定人工智能系统不再符合要求,应在考虑比例原则下,中止、撤回认证或施加限制,除非提供者在规定期限内采取纠正行动。同时应具备针对通知机构决定的申诉程序。 2. 在 H.R.6216 法案中,提到了关于人工智能的一些内容,包括咨询委员会的成员构成及职责等。 3. 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了新的层。出现了如网页浏览、代码解释和授权+认证等流行的原语,使 LLMs 能够与外部进行交互和执行操作。Omni 的计算 AI 功能体现了这种方法。但工具使用自身不能被视为“主动性”。
2024-10-09
AI写作工具都有哪些
以下是一些常见的 AI 写作工具: 邮件写作: 1. Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和多种语言,网站:https://www.grammarly.com/ 2. Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站:http://www.hemingwayapp.com/ 3. ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,网站:https://prowritingaid.com/ 4. Writesonic:基于 AI 生成各种类型的文本,包括电子邮件,生成速度快,网站:https://writesonic.com/ 5. Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率 新闻写作: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容。 2. Writesonic:提供新闻稿件生成、标题生成、摘要提取等功能,智能算法可根据信息快速生成高质量内容。 3. Jasper AI:写作质量较高,支持多种语言,虽主打博客和营销文案,也可用于生成新闻类内容 论文写作: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题 需要注意的是,这些内容由 AI 大模型生成,请仔细甄别,并结合自己的写作风格和需求选择最合适的辅助工具。
2024-10-09
文生视频
以下是关于文生视频的相关信息: 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装其最新插件,在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频网站可查看:https://www.waytoagi.com/category/38 (内容由 AI 大模型生成,请仔细甄别) PixVerse V2 使用教程: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,支持多风格的视频生成,可在提示词中加入“Anime”“Realistic”等词语。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”。图生视频暂不支持“Magic Brush”“Camera Motion”“Motion Strength”等功能,如需使用上述功能,请将模型切换至“PixVerse V1”。 Sora 的模型推理策略: 官方展示 Sora 的应用包括文生视频、图生视频、视频反推、视频编辑、视频融合等。比如: 1. 文生视频:喂入 DiT 的是文本 embedding + 全噪声 patch。 2. 视频编辑:类似 SDEdit 的做法,在视频上加点噪声(不要搞成全是噪声),然后拿去逐步去噪。 3. 图生视频、视频反推、视频融合:喂入 DiT 的是文本 embedding(可选)+特定帧用给定图片的 embedding +其他帧用全噪声 patch。
2024-10-09
了解AI现在需要知道哪些概念
如果您想了解 AI ,以下是一些需要知道的概念: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI ,您可以: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于如何认识 AI ,您可以: 作为一个不具备理工科背景的文科生,把 AI 当成一个黑箱,只需要知道 AI 是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。AI 的生态位就是一种似人而非人的存在。当您想让它实现愿望时,基于它的“非人”一面,您需要尽可能的通过语言文字(足够清晰的指令)压缩它的自由度,不仅要清晰的告诉它需要干什么、边界在哪里、目标是什么、实现路径方法是哪一条,最好还直接给到它所需的正确的知识。
2024-10-09