Prompt 在激活和运用 AI Agent 的“大脑模块”中起着关键作用,在角色定义、知识处理和逻辑规划等环节都不可或缺。但 Prompt 并非完美无缺,其缺点是使用的 Prompt 越长,消耗的 Token 越多,推理成本可能很高。
对于拟人化程度不高的情况,单纯通过 Prompt 来构建大脑模块(Prompttuning)较为适合;而对于“有趣的灵魂”,目前最直接的解决方式是通过微调一个定向模型,微调过程能将信息直接“记忆”在 AI 的“大脑模块”中,提高信息提取效率,减少处理数据量,优化性能和成本。一般创建方式是将 Prompttuning 和 Finetuning 相结合。
此外,还有如 PromptAgent 这样的优化方法,它将提示词优化视为策略性规划问题,采用基于蒙特卡洛树搜索的规划算法,能自主设计出与专家手工制作同等质量的提示词,并应用于多个实际领域的任务且效果显著。
2024-10-09