直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
嗨喽,我刚接触ComfyUI,想从简单的案例开始,一步步挑战更复杂的项目。有没有什么好地方可以找到这种分层次(基础-进阶)的学习案例呢?我想边学边练,这样印象更深刻。
以下是在飞书学习群中可以找到的 ComfyUI 分层次(基础进阶)的学习案例: 基础课程:陈旭常用节点讲解和简单的节点制作、长风归庭基础教程+工作流创建、王蓉? ? Wang Easy 基础搭建和转绘、唯有葵花向日晴基础教程,工作流开发,实际应用场景、苏小蕊基础教程、Sophy 基础课程、啊乐福基础课程、塵优秀案例、风信基础课程➕平面设计应用场景、北南基础课程、Damon 基础课程、雪娴_CC 基础课程(从安装开始)、Joey 实时转绘工作流、三思基础教程、晓珍、戴志伟基础课程、Moana 基础教程、Jl 基础教程、kk 基础教程、samuel 基础 进阶课程:ヘヘ阿甘采样器原理与优化、热辣 HuolarrAI 系统课私聊图生视频、咖菲猫咪基础教程/工作流搭建思路/各版本模型使用的优缺点、傅小瑶 Lucky 如何制作多人转绘视频、云尚工作流节点搭建思路、FǎFá 热门节点功能,搭建、森林小羊基本报错解决方式及基础工作流逻辑分析、蜂老六装一百个最新常用插件后如何快速解决冲突问题、阿苏工作流框架设计、aflyrt comfyui 节点设计与开发、老宋&SD 深度解释虚拟环境部署和缺失模型的安装、Liguo 模型训练、郑个小目标针对于某个插件的深入讲解、波风若川报错解决、皮皮 Peter 工作流的设计规划和调优逻辑、Jāy Līn 锦鲤工作流搭建逻辑和原理、K 如何本地部署基础生图参数选择工作流的基本应用、Adai 基础课程、镜生视频、梦飞基础教程、???各个节点讲解和参数含义、Mr.大狐?报错解决、Duo 多吉~基础课程、渔舟基础课程+工作流搭建思路、乔木船长工作流、☘️基础教程、☘基础教程、工作流设计+典型案例剖析、麒白掌工作流搭建、OutSider 风格迁移、吴鹏基础+工作流搭建、拾光工作流基础搭建从入门到精通、茶浅浅。视频转绘/节点工作流介绍、百废待.新(早睡版)工作流从入门到进阶、电商应用场景、小马哥人物一致性分镜画面生成、C 张工作流搭建+电商落地应用、uui 视频风格迁移、你头发炸了基础教程搭建思路、阿头实战案例分享
2024-09-24
AI视频需要什么 电脑配置
制作 AI 视频通常需要以下方面的准备和配置: 1. 内容准备: 准备一段视频中播放的文字内容,例如产品介绍、课程讲解、游戏攻略等。可以自行创作,也可以利用 AI 生成。 2. 视频制作工具: 可以使用剪映 App 对视频进行简单处理,电脑端打开剪映 App 点击“开始创作”,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号为视频添加文字内容轨道。 3. AI 换脸方面: 有多个 AI 产品可实现换脸效果,如开源免费的 facefusion。 本机解决方案需要 Python 环境、安装视频解码器等多个依赖软件,对 GPU 依赖较大,本地计算机若无 GPU 或 GPU 显存较小,执行速度缓慢,不推荐本地化安装。 云服务解决方案可利用云厂商如阿里云的 PAI 和 AutoDL 提供的大模型运行环境和计算能力,但会产生一定费用。例如选择 AutoDL,在算力市场中选取能接受价格且 GPU 配置更高的算力设备,并通过模型镜像启动 GPU 服务器。
2024-09-24
如何使用DIFY
使用 Dify 构建知识库的具体步骤如下: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。 Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-09-24
现在业内比较主流的 RAG 方案 开源/商业的都有哪些啊
目前业内比较主流的 RAG 方案包括开源和商业的,以下为您介绍: 1. Dify:这是一个开源的大模型应用开发平台。它结合后端即服务和 LLMOps 的理念,为用户提供直观界面来快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具、广泛的模型集成、功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。还允许定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能进行持续监控和优化。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,适合个人研究和企业级落地项目。 官方手册:https://docs.dify.ai/v/zhhans 一般来说,如果是个人研究,推荐单独使用;如果是企业级落地项目,推荐多种框架结合使用。 2. LangChain:这是一个为简化大模型应用开发而设计的开源框架。通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。设计注重简化开发流程,支持广泛模型,具备良好可扩展性,适应不断变化的业务需求。作为社区广泛支持的开源项目,拥有活跃贡献者和持续更新,提供全面文档和示例代码,充分考虑应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。 官方手册:https://python.langchain.com/docs/get_started/introduction/
2024-09-24
小白如何入门AI
对于小白入门 AI,以下是一份详细的指南: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 4. 掌握提示词技巧: 提示词上手容易且很有用。 5. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品和文章分享,欢迎实践后进行分享。 6. 体验 AI 产品: 尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 通过与这些产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 7. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 需要记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-09-24
AI学习需要学习那些东西
以下是关于学习 AI 所需内容的总结: 对于中学生: 1. 从编程语言入手学习,如 Python、JavaScript 等,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(机器学习、深度学习等)以及在各领域的应用案例。 4. 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题。 5. 关注 AI 发展的前沿动态,了解最新进展,思考其对未来社会的影响。 对于新手: 1. 了解 AI 基本概念,熟悉术语和基础概念,了解主要分支及它们之间的联系,浏览入门文章。 2. 开始 AI 学习之旅,可在「」中找到为初学者设计的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习。 3. 选择感兴趣的模块深入学习,如图像、音乐、视频等。 对于不会代码但想学习 Python + AI 的: 1. 学习 Python 的属性和方法,包括为类定义属性和方法,通过对象调用。 2. 了解继承和多态,包括类之间的继承关系和多态的实现。 3. 理解异常处理,包括异常的概念和如何使用 try 和 except 语句处理错误。 4. 掌握文件操作,如文件读写、文件与路径操作。 5. 对于 AI,尝试了解基础内容,如 AI 背景知识基础理论(人工智能、机器学习、深度学习的定义及关系)、历史发展(重要里程碑)、数学基础(统计学基础、线性代数、概率论)、算法和模型(监督学习、无监督学习)。
2024-09-24
视频剪辑
以下是关于视频剪辑的相关知识: 使用的工具: Pika、Pixverse、Runway、SVD 等四大 AI 视频工具。 剪辑流程: 1. 视频粗剪:先确定画面逻辑,声音可作部分参考,等画面确定后再制作和精调。粗剪时画面无需精美,重点是快速把握片子全貌,放上素材并确定需调整和替换的部分。 2. 视频定剪:将画面素材调整和替换至满意效果。 3. 音效/音乐:以剪映为例,其有简单音效库,复杂真实音效可能需另外制作。使用商用音乐需注意版权问题。 4. 特效:以剪映为例,可添加一些光的效果,如因 AI 视频生成吃掉部分光影时,可通过添加光影效果提升效果。 具体案例: 1. 制作《动物时装秀》:直接把所有素材拖进剪映,先放背景音乐(总长度大概 18s 左右),选中音乐后选择自动踩点,将所有视频拖入主轨道,选中所有视频选择右侧变速曲线变速,在每个视频中间穿插转场动画(第一个和第二个视频连接处不加转场),制作开头(选中第一个视频,右侧动画出场水墨),加开场文字(选中文字,右侧动画出场水墨),然后导出发布。 2. AI 文旅视频共学:通过动态衔接、形状相似性进行素材组合,运用遮罩转场,制作画面时遵循对比、变化等原则形成个人风格。 希望这些信息对您有所帮助。
2024-09-24
有没有可以提炼短视频标题文字、点赞数、评论数的AI工具
目前市面上有一些 AI 工具可以在一定程度上帮助您提炼短视频的相关信息,例如一些数据分析平台结合了 AI 技术,能够对短视频的标题文字、点赞数和评论数进行分析和提炼。但具体的工具选择可能会因您的需求和使用场景而有所不同。常见的数据分析工具如飞瓜数据、蝉妈妈等,它们在处理短视频数据方面具有一定的能力,但可能需要您进一步探索和筛选,以找到最适合您需求的功能。
2024-09-24
有没有可以提炼短视频标题文字、点赞数、评论数的工具
目前市面上有一些工具可以帮助您提炼短视频的标题文字、点赞数和评论数,例如飞瓜数据、蝉妈妈等。这些工具通常能够提供较为全面的短视频数据分析功能,包括您所需要的标题文字、点赞数和评论数等关键信息。但不同工具的特点和适用范围可能有所差异,您可以根据自己的具体需求和使用习惯进行选择。
2024-09-24
agi是什么
AGI 即人工通用智能(Artificial General Intelligence),指的是能够做任何人类可以做的事的人工智能。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 目前,AI 分为 ANI(Artificial Narrow Intelligence,弱人工智能)和 AGI,ANI 得到巨大发展但 AGI 还没有取得巨大进展。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 此外,还有如新型 AI 架构 AGISamantha,包含多个 LLM 联动,模仿人脑思考、记忆、感知和自主交流,能根据环境和情境自主决定交流时机,具有特殊记忆系统,根据情境相关性存储和回忆信息,包含思考、意识、潜意识等多个模块,并能自我迭代进化,其灵感来源于电影《Her》的 Samantha。
2024-09-24