直达「 通往AGI之路 」飞书知识库 →
首页/全部问答
用AI建立本地的知识库,推荐哪些?
以下是为您推荐的用 AI 建立本地知识库的方法和相关软件: 1. AnythingLLM: 包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库时,有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 2. Obsidian 加 Cursor: 可利用 Obsidian 的浏览器剪藏插件和 AI 插件,但配置复杂,可能存在恶性 Bug 。 可以用 Cursor 等 AI IDE 解决问题,主要有三类作用:帮助用模糊问题检索笔记库;基于笔记库进行研究,结合多个笔记软件给出建议;生成和修改笔记,如生成整个笔记文件或修改笔记文案。 希望以上内容对您有所帮助。
2025-02-22
有没有专业分析和修改简历的AI
以下是一些专业分析和修改简历的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 此外,还有超级简历优化助手,能帮助用户优化简历提高求职成功率。您还可以查看这里获取更多 AI 简历产品:https://www.waytoagi.com/category/79 。 希望这些信息对您有所帮助,您可以根据自己的需要选择最适合您的工具。
2025-02-22
X公司的grok有客户端吗?
X 公司的 Grok 有客户端。它提供免费图像生成和聊天功能,效果优异。下载链接为:
2025-02-22
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
ollama是什么,使用场景有什么
Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。 它具有以下特点和优势: 1. 支持多种大型语言模型:包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,能让用户轻松在本地环境中启动和运行大模型。 3. 模型库:提供丰富的模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,通过 https://ollama.com/library 查找。 4. 自定义模型:用户能通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 总的来说,Ollama 是一个高效、功能齐全的大模型服务工具,不仅适用于自然语言处理研究和产品开发,也适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户。 其使用场景包括但不限于: 1. 自然语言处理研究。 2. 产品开发。 安装方法:官方下载地址为 https://ollama.com/download 。安装完成后,在 macOS 上启动 ollama 应用程序,在 Linux 上通过 ollama serve 启动,可通过 ollama list 确认是否安装成功。运行大模型时,在命令行中输入相应命令即可,模型会自动下载到本地。在 Python 程序中使用时,需确保 ollama 服务已开启并下载好模型。
2025-02-22
Coze制作智能体如何设置拍照按钮
以下是关于在 Coze 制作智能体中设置拍照按钮的相关信息: 搭建证件照应用页面:创建应用并设置第一个 div 容器,页面分为上中下三块或左右两块,进行组件设置调整,包括容器的高度、宽度、排列方向,文本组件的字体、颜色、加粗等属性,处理图片上传,对左侧图片进行数据绑定等。 前端页面搭建技巧:在 DIV10 中选择子容器、复制搭建元素,调整表单组件的尺寸、按钮文案和上传文件类型等设置。 业务逻辑流程设计:包括用户上传照片、图片理解、图像生成、智能换脸、背景修改等步骤,还提及了各步骤中的参数设置、提示词调整和测试方法。 一键改图工作流的设置:工作流未用大模型,每次生成结果唯一,无种子概念,无法保存特定结果。调好后可配东北大花袄等背景,修改名字便于排查问题。添加立即生成事件,表单有多种事件,可设置提交时调用工作流,限制上传文件数量,表单提交时可设置禁用态。进行数据绑定与效果查看,工作流数据绑定要先清空,避免手动输入变量,选工作流时要注意准确。图片生成方式可调好第一张图片后复制成三张,根据背景颜色区分,通过连接节点选择对应图片输出。预览调试方法在用户界面不发布也可调试,有预览功能。识别图片特征有误时需在工作流里优化提示词,可考虑使用视频模型。
2025-02-22
AI案例
以下是一些 AI 在不同领域的应用案例: 活动策划方面: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,AI 可以生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:AI 可以基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上,使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等,AI 可以辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统可以作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如,Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:AI 可以自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,AI 可以优化营销策略,实现个性化营销。例如,针对目标受众的定向广告投放等。 其他领域: 1. 客户服务聊天机器人中的自然语言处理:具有适应性,能根据大量数据集训练对实时客户消息做出响应,并可能随着系统学习而增加个性化;具有自主性,基于客户文本输入生成类似人类的输出,回答查询、帮助客户查找产品和服务或发送有针对性的更新,操作时几乎不需要人工监督或干预。但可能存在无意包含不准确或误导信息等监管问题。 2. 医疗保健分诊系统的自动化:具有适应性,能根据医疗数据集、患者记录和实时健康数据分析预测患者病情;具有自主性,为医疗专业人员或直接为患者生成有关患者症状可能原因的信息,并推荐潜在的干预措施和治疗方法。 扣子案例: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2025-02-22
财务与ai
以下是关于财务与 AI 的相关内容: 生成式 AI 在金融服务业具有巨大潜力,能帮助金融服务团队改进内部流程,简化财务团队日常工作。具体表现为: 1. 更动态的预测和报告: 预测方面:帮助编写公式和查询实现分析自动化,发现模式,为预测建议输入并适应模型。 报告方面:自动创建文本、图表等内容,并根据不同示例调整报告。 会计和税务方面:综合、总结并提供可能答案。 采购和应付账款方面:自动生成和调整合同、订单、发票及提醒。 2. 但生成式 AI 输出有局限性,在需要判断或精确答案领域不能完全依赖,至少需人工审查。 在将生成式 AI 应用于金融服务时,新进入者和现有参与者面临两个主要挑战: 1. 使用金融数据训练 LLMs:新进入者可能先使用公开金融数据优化模型,再用自身收集数据;现有参与者虽可利用专有数据但往往过于保守,这给新进入者带来竞争优势。 2. 模型输出准确性:金融问题答案影响大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。 金融服务公司若用历史金融数据微调大型语言模型,能迅速回答各类金融问题。金融服务行业准备利用生成式 AI 实现五个目标:个性化消费者体验、成本效益高的运营、更好的合规性、改进的风险管理、动态的预测和报告。在现有企业与初创公司的竞争中,现有企业因专有金融数据访问权限有初始优势,但受准确性和隐私高标准限制;新进入者初期用公开数据,后逐渐生成自身数据并以 AI 作为新产品分销突破口。
2025-02-22
如何学习AI?
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-22
你们用的是trae吗
Trae 是一款与 AI 深度集成的编程工具,具有以下特点和功能: 1. 由字节开发,能够将用户的想法通过自然语言描述实现出来。 2. 可以限时免费无限量使用地球上最强大的编程大模型 Claude Sonnet,实现全自动化的 AI 编程。 3. 包含完整的 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等。 4. 提供智能问答、实时代码建议、代码片段生成、从 0 到 1 开发项目等功能。 在编写代码时,可随时与 AI 助手对话,获得代码解释、注释和错误修复等帮助。 AI 助手能够理解当前代码并在编辑器中实时提供代码建议,提升编程效率。 通过自然语言描述需求,AI 助手将生成相应的代码片段,甚至能够编写项目级或跨文件的代码。 告诉 AI 助手想开发的程序,它将根据描述提供相关代码或自动创建所需文件。 5. 下载链接:https://sourl.co/2DCmmW ,其官方说明文档也有不少清晰的介绍:https://docs.trae.ai/docs 。 在实际产品使用中,有人用 Chat 模式更多,因为其更可控,可只修改让它修改的东西。而 Trae 也有 Builder 模式,能够更自动化地生成代码。
2025-02-22